Threading in C#

Joseph Albahari

Last updated 2011-4-27

Interested in a book on C# and .NET by the same aut hor?

See www.albahari.com/nutshell/

Table of Contents

Part 1: Getting Startedooviiiiiiiies i 4
Introduction and CONCEPLScceerrimmmmmmmm e e e e e e e
JOIN @NA SIEEP ...uuueiiieeiieee e e e eeeeeeeeeeesasennsensrennnennnnns 6...
How Threading WOTKScooiiiiiiiiiit e e 7
Threads VS ProCeSSEScooo i 7
Threading’s Uses and MISUSES e e e eee e e 8
Creating and Starting Threadscccooeveeiiii i, 8..
Passing Data to a Thread oo eeveeniniiiccceee e 9
NamMIiNG TRrEaAASc.cvviiiiiiiiee e 11
Foreground and Background Threadsccccceeovviiiiiiinieennen, 11
Thread Priority..........ccoooieiiiieeeeee 12
Exception HandliNgocuviiiiiiiiic e 12
Thread POOING......cciiiiiiiiiie ettt 14
Entering the Thread Pool via TPL...........ccomeemiiiiieiieceeeeiee 15
Entering the Thread Pool Without TPL.........ccccccciviiiiiiiiiiinnn 16
Optimizing the Thread POOIvvviicceeeeiiiiiieeeeeeeeeeeeee, 17
Part 2: Basic Synchronization...........cccccceees coivieeieieeeeeeiee e, 19
Synchronization ESSeNtialSoo . commemmieeeiieeeeeeeeeeeeee e 19.
BIOCKING ..o 19.
Blocking VErsus SPINNINGc..eevvvvevvmmmmmn e eeeeeeeeeeeeeaaeaaaseasaseaeeens 20
TRrEAASIALE ... e e 20.
LOCKING -ttt 21
Monitor.Enter and MONITOrEXIt.............utmmeeeeeeeaeeiieeiiieeeeeeeeeeee 22
Choosing the Synchronization Objectcccceeevviiiiiiiiiiiiiniiiiinnnn, 23
WREN 10 LOCK ... 23
(T3 ([gTo =TT I 2N o] 011 ox Y2 24
=TS (=0 B 0 Td (T o PP 24
DEAIOCKS ...ttt ettt 25,
PerformancCe...........ooo i e 6.2
IMIUEEX ..ttt e e e e e e e e et e e e e e e e eeebeann 26
ST=T =T o] 1 o] (= O USRPPRRRY S04

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

Thread Safelyooviiiiiiiii e e 28
Thread Safety and .NET Framework TYpes....mmeeeeeeiieeiinnnn.. 28

Thread Safety in Application Servers. ..., 30
Rich Client Applications and Thread Affinitycc...cccoooviiiiiinnnen. 30
Immutable ODJECES...........cooii i 32
Signaling with Event Wait Handles............coeeeeeeeiiiiiiiiiiiie e, 33
AULORESEIEVENT ... 33
MaNUAlIRESEIEVENL............uiiiiiiiiiieeet oo e e e e e e e e e aaeaaaaeeeaeeeaeeeeeeeeas 37
COUNtAOWNEVENT ..o 38
Creating a Cross-Process EventWaitHandle 39
Wait Handles and the Thread Pool ... 39
WaitAny, WaitAll, and SignalAndWait ..., 40
Synchronization ContextS...........oooiiiiiieeeeeciiee e AL
REENITANCY ...ccvvviiii i nenn e 3
Part 3: USINg Threadsccoviiiiiiiiiiiiiiis et 44
The Event-Based Asynchronous Patterncccccccceeeeeeeiieieieesieeeeeeeeenn, 44
BackgroundWOrKErccoceviieeiiiiiiii e 4D
Using BackgroundWorker............oo oo 45
Subclassing BackgroundWorker ..o, 47
Interrupt and ADOIT ... 48
11T 4 U o) SRR UUPPUR < 1)
Y 010] SO PPPRRPRY” 1)
Safe CanCellationoooiiiiiiiiiiie e 50
Cancellation TOKENScooiiiei e 51
Lazy INtialiZationeuvuiiieiiiiiiieeeer e eeeeeeeeev e ennnns 52
LAZY ST > et 53.
LazyInitialiZer..........cooo i 3.5
Thread-LocCal SIOrageccvvvieeees s et e e 54
[ThreadStatiC]uvuerrieeiiivmmmmmr e eeeeeeeeeeen 4D
I L (=T= To | o Tor= | PP 55
GetData and SetDatacoooeeeeeei et 55
I 0= ST 56
Multithreaded TIMEISuviiiiiiiiiiit e 56
Single-Threaded TIMEISccccoiiiiiiiis s s 58
Part 4: Advanced TOPICS ...cooeeeviiviiiiiiiiiiies iiieee e e e e e e e e e e 59
Nonblocking SYNChronizationoeeeeeeeeeeeeeeeeeeeeeeeee e 59
Memory Barriers and Volatilityoommeeeeeeeeeiiiiiiieeee, 59
INEEIOCKEM ..o i 63.
Signaling with Wait and PUISE..........c.ovvccceeviiiii, 5.6
How to Use Waiit and PUISE.............ooiii e 65
Producer/Consumer QUEUEuuuuutceceeeeeeeeeeeeeeneennneennnennnennnes 67
WAL TIMEOULS ...ttt e 70
Two-Way Signaling and RaCESvieeeeeee e 71
Simulating Wait Handles................oooiimmmmeiiiieiieeeeeeeee 72
Writing a CountdoWNEVENL...........ccoooi s 74
Thread RENUEZVOUSccoiiiiiiiiiiiieeeeeeiieee e 75

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

THE BaArTiEr Class ...uiiviee ittt e e e eams 75

Reader/Writer LOCKSueiiiieiieiiiicemmmmc e eeeeveeviin e e eeeeesnnnnnnn
Upgradeable Locks and Recursion............oeeeeeeeeeeeveevveeneennnn. 18
Suspend and RESUMEcoooiiiiiii e 80
AbOorting Threadsooo oo 80
Complications with Thread.AbOrt.........ccoovcccceeeeeieiiii e, 82
Ending Application DOMAINSvvviiimeccce e 83
ENdiNG PrOCESSESccoiiiiiiieeee et 84
Part 5: Parallel Programmingcccccooiiiis civiviiiiiie e 85
Parallel Programmingccocooieoiiiiiiiesiees e aa e aa e 85
WY PEX? ittt st ettt e e e e e e s ettt e e eeenns 85
PFEX CONCEPLS ..ottt mrrremr e e e e e e e e e e eeeen e e e e 86
PEX COMPONENTS. ... e 86
Whento Use PFEX ...ttt 87
e T SRS 87
Parallel Execution BalliStiCs..............ccceeeeiviiiiiiiiiiis 89
PLINQ and Orderingcooeieeiieeee oot 89
PLINQ LimitatioNS.......ccoovuiuiiiiiieeieeeviemmms e ce et e e e e eear e eeeeeenns 90
Example: Parallel Spellcheckercoeeveeeeieiiiiiiiiiiiniinniinn, 90
Functional PUNtY ... 92
Calling Blocking or I/O-Intensive FUNCLIONScooccivvviieeneeennn. 92
(0T Tol=]| P 1o] o 1PN 94.
Optimizing PLINQoooiiiiiiiieieeeeieeieee e eeeeeeeeeeeeeeesaanssesnsenennnns 94
Parallelizing Custom Aggregations...........cccccceeveeireiennniinniinnennnns 96
The Parallel ClIaSssSuvviiiiiiiiiiiiieeeeemess s s s s s e e e e e a e e e e 100
Parallel.INVOKE ..o 100
Parallel.For and Parallel.ForEach..........ccceeeeirivrrriieiiiiiiiiiiiiininns 100
Task ParalleliSm...........uuoiiiiiiceeeee e 105
Creating and Starting TasKS...........uuvuiuceviiiiiiiie e, 105
WaitiNg ON TASKSeuuiiiiiiiiii e emmmee e 107
Exception-Handling TasksSuuuuuiiiieeeee e 108
Canceling TasKS........oooiiiiiiiiiiiii e 109
LOT0]] 11 V=11 (0] o PP 110
Task Schedulers and UIS ... 113
JLIE=] = (e (] Y APPSR 114
TaskComMPIEIONSOUICEccooiiiiiiiii et 114
Working with AggregateEXCePtioNcommmeeenemnnniiiiiaesseeeeeeeeeeeeens 115
Flatten and Handle............cooovuiii e, 116
Concurrent ColleCtiONScevvviiiiiiiceeee e, 117
IProducerConsumerCollection<T>coccemmervieiiiiiiin e 117
(070] (o101 1 (=T 011 = F=To Sl 1SR 118
BlockingCollection<T>...........ooooiiiiiiiiiie e, 119
SpinLock and SpiNWalt................oooiiii e 21
SPINLOCK. ... ettt 12
SPINWAL ...t 221

© 2006-2010 Joseph Albahari & O'Reilly Media, 1Adl. rights reserved

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

Part 1: Getting Started

Introduction and Concepts

C# supports parallel execution of code through ithutading. A thread is an independent executidh,@ble to run
simultaneously with other threads.

A C#client program (Console, WPF, or Windows Forms) stares simgle thread created automatically by the Ch& a
operating system (the “main” thread), and is madéithreaded by creating additional threads. Heaes$mple example

and its output:

All examples assume the following namespaces aperitad:

$ %&S " () *)

$ %&SS$ " ())
+
+

The main thread creates a new threah which it runs a method that repeatedly prinesdharacter “y”.
Simultaneously, the main thread repeatedly primischaracter “x”. Here's the output:

Fkkkkkkkokkokkokkokk
Fkdkkkkkokokkkkok ok kkk ok **
Fkkkkkkkkkokkokkokkokkokkkk
Main Thread
=, thread ends
new application
Thread time —» ends
% .Start() thread ends
= YYYYYVYYYYVYYYYYYYYYYYYYVYYVYYYYYYYYYYYYY- - - - YYYYYYYYYYVYY
Worker Thread
Once started, a thread’s property returns , until the point where the thread ends. A threadsenvhen the
delegate passed to the 's constructor finishes executing. Once endedreath cannot restart.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

The CLR assigns each thread its own memory statikeddocal variables are kept separate. In th¢ eeaxmple, we
define a method with a local variable, then cadl thethod simultaneously on the main thread andwyrereated

thread:

/ 012 2
" $ %3 " (242
+
4444444444
A separate copy of the cycles variable is createdaxh thread's memory stack, and so the outpprtadictably, ten
question marks.

Threads share data if they have a common refetteribee same object instance. For example:

"6 «C 7)) I+
+
+

Because both threads call on the same instance, they share the field. This results in "Done
being printed once instead of twice:

/
Static fields offer another way to share data betwtareads. Here’'s the same example with as a static field:

"6 c 7y)+
+
+

Both of these examples illustrate another key cphdbat of thread safety (or rather, lack of ®he output is actually

indeterminate: it's possible (though unlikely) thBbne” could be printed twice. If, however, we swe order of
statements in the method, the odds of “Done” being printed twiceugodramatically:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

"6 (7)) +

/ 6

The problem is that one thread can be evaluatiad ttstatement right as the other thread is executiag t7
statement—before it's had a chance to set to true.

The remedy is to obtain an exclusive lock whiledirg and writing to the common field. C# providbe tock
statement for just this purpose:

0
08 ! 08

+
Lo
"6 (7)) +

+
+
+
When two threads simultaneously contend a lockh{gcase, !), one thread waits, or blocks, until the lock

becomes available. In this case, it ensures ordytloread can enter the critical section of codetahe, and “Done”
will be printed just once. Code that's protectediunh a manner—from indeterminacy in a multithregdiontext—is
called thread-safe.

Shared data is the primary cause of complexityabsture errors in multithreading. Although oftesegttial,
it pays to keep it as simple as possible.

A thread, whileblocked doesn't consume CPU resources.

Join and Sleep

You can wait for another thread to end by callisi method. For example:

$ %&S " ()

+

This prints “y” 1,000 times, followed by “Threadhas ended!” immediately afterward. You can inclademeout when
calling9 , either in milliseconds or as a: . It then returns if the thread ended 6r if it timed out.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 6

pauses the current thread for a specified period:

Dol < & o &
: 3% ! 38$
While waitingona : or9 , athread is blocked and so does not consume Eftlirces.

' $ relinquishes the thread’s current time slice imiatedly, voluntarily handing over the CPU
to other threads. Framework 4.0's new method does the same thing—except that it
relinquishes only to threads running on saeneprocessor.

' $ or is occasionally useful in production code for athad performance tweaks. It's also an
excellent diagnostic tool for helping to uncovertdd safety issues: if inserting anywhere in

your code makes or breaks the program, you alnasstioly have a bug.

How Threading Works

Multithreading is managed internally by a threaldestuler, a
function the CLR typically delegates to the opemgisystem. A
thread scheduler ensures all active threads ayeaddld appropriate
execution time, and that threads that are waitimigiacked (for
instance, on an exclusive lock or on user inpud)ndt consume
CPU time.

On a single-processor computer, a thread schegaetésrmstime-
slicing—rapidly switching execution between each of thévac
threads. Under Windows, a time-slice is typicafiythe tens-of-
milliseconds region—much larger than the CPU ovadhe
actually switching context between one thread amadteer (which
is typically in the few-microseconds region).

On a multi-processor computer, multithreading ipleamented with
a mixture of time-slicing and genuine concurrenglyere different
threads run code simultaneously on different CPi$salmost
certain there will still be some time-slicing, basa of the
operating system’s need to service its own threaaswell as
those of other applications.

A thread is said to bpreemptedvhen its execution is interrupted
due to an external factor such as time-slicingnbrst situations, a
thread has no control over when and where it'sippeed.

Threads vs Processes

A thread is analogous to the operating system gmoitewhich your
application runs. Just as processes run in paxail@ computer,
threads run in parallelithin a single proces$rocesses are fully
isolated from each other; threads have just adidnitegree of
isolation. In particular, threads share (heap) ngmath other threads running in the same appliatiThis, in part, is
why threading is useful: one thread can fetch gathe background, for instance, while anotherdtrean display the
data as it arrives.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 7

Threading’s Uses and Misuses

Multithreading has many uses; here are the mostrazm
Maintaining a responsive user interface

By running time-consuming tasks on a parallel “vastkthread, the main Ul thread is free to contipuecessing
keyboard and mouse events.

Making efficient use of an otherwise blocked CPU

Multithreading is useful when a thread is awaitingesponse from another computer or piece of haedWehile
one thread is blocked while performing the taskeothreads can take advantage of the otherwiserdaebed
computer.

Parallel programming

Code that performs intensive calculations can eeefaster on multicore or multiprocessor compuifettse
workload is shared among multiple threads in aitiivand-conquer” strategy (see Part 5).

Speculative execution

On multicore machines, you can sometimes improvipaance by predicting something that might nexete
done, and then doing it ahead of time. LINQPad tisisgechnique to speed up the creation of newigsieA
variation is to run a number of different algorithin parallel that all solve the same task. Whielhane finishes
first “wins”—this is effective when you can’t knoahead of time which algorithm will execute fastest.

Allowing requests to be processed simultaneously

On a server, client requests can arrive concugramiti so need to be handled in parallel (the .NEamMEwork
creates threads for this automatically if you uSPANET, WCF, Web Services, or Remoting). This dao be
useful on a client (e.g., handling peer-to-peewnéting—or even multiple requests from the user).

With technologies such as ASP.NET and WCF, you beaynaware that multithreading is even taking pltageless
you access shared data (perhaps via static figitlsput appropriate locking, running afoul of thdesafety.

Threads also come with strings attached. The biggéisat multithreading can increase complexitgvidg lots of
threads does not in and of itself create much ceriiyt it's the interaction between threads (tyflicaia shared data)
that does. This applies whether or not the inteyads intentional, and can cause long developrogeies and an
ongoing susceptibility to intermittent and nonreguroible bugs. For this reason, it pays to keepacté®on to a
minimum, and to stick to simple and proven desighsrever possible. This article focuses largelylealing with just
these complexities; remove the interaction andeteenuch less to say!

A good strategy is to encapsulate multithreadimgclinto reusable classes that can be independexdmined
and tested. The Framework itself offers many hideeel threading constructs, which we cover later.

Threading also incurs a resource and CPU costiadading and switching threads (when there are ractige threads
than CPU cores)—and there’s also a creation/teamndmst. Multithreading will not always speed upyo
application—it can even slow it down if used exoesy or inappropriately. For example, when heaigkd/O is
involved, it can be faster to have a couple of wottkreads run tasks in sequence than to haverd@dh executing at
once. (In Signaling with Wait and Pulse, we deseihibw to implement a producer/consumer queue, wirictides just
this functionality.)

Creating and Starting Threads

As we saw in the introduction, threads are creasiag the class’s constructor, passing in a
delegate which indicates where execution shouldihbdgere’s how the delegate is defined:
:0
Calling on the thread then sets it running. The threadimmaes until its method returns, at which point theead
ends. Here's an example, using the expanded C#sjmit creating a delegate:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 8

(7)69
+
+

In this example, thread executes — at (much) the same time the main thread calls . The result is two near-
instant hellos.

A thread can be created more conveniently by syiagifust a method group—and allowing C# to infes t
delegate:

5 *:

Another shortcut is to use a lambda expressiomonymous method:

>(7)< 6)

Passing Data to a Thread

The easiest way to pass arguments to a threadwsttarethod is to execute a lambda expression #iiattbe method
with the desired arguments:

With this approach, you can pass in any numbergfraents to the method. You can even wrap theeentir
implementation in a multi-statement lambda:

>

A
~N~
N
Y

o

N2

6)

You can do the same thing almost as easily in G#vi&h anonymous methods:

+

Another technique is to pass an argumentinto ’'s method:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

? 08 @08

@08
(7
+
This works because 's constructor is overloaded to accept either af tlelegates:
:0
:0 ? A 08 08
The limitation of? A is that it accepts only one argument. And beciissef type 08 ,

it usually needs to be cast.

Lambda expressions and captured variables

As we saw, a lambda expression is the most powerdylto pass data to a thread. However, you musaleful about
accidentally modifyingaptured variablegfter starting the thread, because these variaéeshared. For instance,
consider the following:

$ %&$ "
> (

The output is nondeterministic! Here's a typicaiuk:
$BBC33DDEE

The problem is that thevariable refers to theamememory location throughout the loop’s lifetime.eféfore, each
thread callg on a variable whose value may change as it isinghn

This is analogous to the problem we describe irpt@@ed Variables” in Chapter 8 of C# 4.0 in a NetshThe
problem is less about multithreading and more alidts rules for capturing variables (which are sohe
undesirable in the case'bf and" loops).

The solution is to use a temporary variable de\id:
$ %&S$ "

>(
+

Variable : is now local to each loop iteration. Thereforestethread captures a different memory location and
there’s no problem. We can illustrate the problarthe earlier code more simply with the followingenple:

*)&)
& >(7 *

*)B)
B >(7 *

&
B

Because both lambda expressions capture the samevariable, B is printed twice:

B
B

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 10

Naming Threads

_ _ Get the whole book
Each thread has®| property that you can set for the benefit of dejiug.
This is particularly useful in Visual Studio, sinttes thread’s name is displayeq cn1: introducing C#
in the Threads Window and Debug Location toolbau ¥an set a thread'’s Ch2: C# Language Basics

; . ; i ; Ch3: Creating Types in C#
name just once; attempts to change it later withan exception. Cha: Advanced Ck Features

The static (property gives you the currently executin{ ChS: Framework Fundamentals

; :) . Ch7: Collections
thread. In the following example, we set the mainead’s name: Ch8: LINQ Queries

5 Ch9: LINQ Operators
Ch10: LINQ to XML
Ch11: Other XML Technologies
Ch12: Disposal & Garbage Collection
Ch13: Code Contracts & Diagnostics
(5)) Ch14: Streams & 1/0
! . Ch15: Networking
15)1) Ch16: Serialization
| Ch17: Assemblies
’ Ch18: Reflection & Metadata
' Ch19: Dynamic Programming
+ Ch20: Security
Ch21: Threading
Ch22: Parallel Programming
Ch23: Asynchronous Methods
(7)< ") | 5 Ch24: Application Domains
Ch25: Native and COM Interop
Ch26: Regular Expressions

C# 4.0 in a Nutshell

Foreground and Background Threads www.albahari.com/nutshell

By default, threads you create explicitly émeeground threadsForeground
threads keep the application alive for as longrgsame of them is running,
whereasdackground threaddo not. Once all foreground threads finish, thgligation ends, and any background
threads still running abruptly terminate.

A thread'’s foreground/background status has ndioeldo its priority or allocation of execution tam

You can query or change a thread’s backgroundssteging its F ! property. Here's an example:

?

If this program is called with no arguments, thekeo thread assumes foreground status and will evathe= 7
statement for the user to press Enter. Meanwlhitentain thread exits, but the application keepsinghbecause a
foreground thread is still alive.

On the other hand, if an argument is passed to , the worker is assigned background status, angribgram exits
almost immediately as the main thread ends (tetinigghe= 7).

When a process terminates in this manner,"any blocks in the execution stack of background thsesaé
circumvented. This is a problem if your program é&yp" (or) blocks to perform cleanup work such as
releasing resources or deleting temporary filesa¥ad this, you can explicitly wait out such baakgnd threads upon
exiting an application. There are two ways to aqoish this:

If you've created the thread yourself, call on the thread.
If you're on a pooled thread, use an event waitlan

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 11

In either case, you should specify a timeout, 30 gan abandon a renegade thread should it refufsgdio for some
reason. This is your backup exit strategy: in the, ¢gou want your application to close—without tlser having to
enlist help from the Task Manager!

Foreground threads don’t require this treatmeritybu must take care to avoid bugs that could cthes¢hread not to
end. A common cause for applications failing ta exoperly is the presence of active foregroundats.

If a user uses the Task Manager to forcibly endEr. process, all threads “drop dead” as though thene
background threads. This is observed rather thanrdented behavior, and it could vary dependindhen t
CLR and operating system version.

Thread Priority

A thread’s? property determines how much execution time is gelative to other active threads in the
operating system, on the following scale:

? 7 #F 5 #5 # 05 #< +

This becomes relevant only when multiple threadssanultaneously active.

Think carefully before elevating a thread’s prigsitit can lead to problems such as resource starvébir
other threads.

Elevating a thread'’s priority doesn’t make it capatfl performing real-time work, because it’'s dfiltottled by the
application’s process priority. To perform real-¢iwork, you must also elevate the process priostpg the?

classin / (we didn't tell you how to do this):
? 1?2 (7
? (0 ? ? (<
? ? (< is actually one notch short of the highest prjorit . Setting a process priority
to= instructs the OS that you never want the proaeggetd CPU time to another process. If your progra

enters an accidental infinite loop, you might feaken the operating system locked out, with notisimgrt of the power
button left to rescue you! For this reasen, is usually the best choice for real-time applizasi

If your real-time application has a user interfagleyating the process priority gives screen upgdakeessive
CPU time, slowing down the entire computer (patéidy if the Ul is complex). Lowering the main tlae's
priority in conjunction with raising the procesgsority ensures that the real-time thread doegett
preempted by screen redraws, but doesn'’t solvpribl@em of starving other applications of CPU time,
because the operating system will still allocatpdiportionate resources to the process as a whiolieleal
solution is to have the real-time worker and ustagrface run as separate applications with diffepeocess
priorities, communicating via Remoting or memorygped files. Memory-mapped files are ideally suiied
this task; we explain how they work in Chaptersahd 25 of C# 4.0 in a Nutshell.

Even with an elevated process priority, there'srt lto the suitability of the managed environmanhandling hard
real-time requirements. In addition to the issudatency introduced by automatic garbage collectibe operating
system may present additional challenges—evenrforamaged applications—that are best solved witliceest
hardware or a specialized real-time platform.

Exception Handling

Any / /" blocks in scope when a thread is created are oélegance to the thread when it starts
executing. Consider the following program:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 12

+
I* *
2 6
(7) 6)
+
+
+ 5 ="
The / statement in this example is ineffective, andrteely created thread will be encumbered with an
unhandledb =" I*: . This behavior makes sense when you consideetiwt thread has an

independent execution path.

The

You

remedy is to move the exception handler inko thmethod:
:0
+
5=" I 0

+

I* *

OH

2 |

+

need an exception handler on all thread engthods in production applications—just as you dsuélly at a

higher level, in the execution stack) on your nthiread. An unhandled exception causes the wholkcafipn to shut
down. With an ugly dialog!

In writing such exception handling blocks, rarelguld youignorethe error: typically, you'd log the details o

the exception, and then perhaps display a dialogvatg the user to automatically submit those detai your
web server. You then might shut down the applicatibecause it's possible that the error corrupted th
program’s state. However, the cost of doing shas the user will lose his recent work—open docusyeor
instance.

The “global” exception handling events for WPF &dohdows Forms applications
(- [I* : and-: I* :) fire only for
exceptions thrown on the main Ul thread. You stillst handle exceptions on worker threads manually.

57 B (R BN | I* : fires on any unhandled exception, but provides no
means of preventing the application from shuttiogd afterward.

The

re are, however, some cases where you don’'ttodeghdle exceptions on a worker thread, becdueseNET

Framework does it for you. These are covered iropeg sections, and are:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

13

- Asynchronous delegates
= !
- The Task Parallel Library (conditions apply)

Thread Pooling

Whenever you start a thread, a few hundred micoysscare spent organizing such things as a fregatpiocal
variable stack. Each thread also consumes (by iegaaund 1 MB of memory. Thiiread poolcuts these overheads
by sharing and recycling threads, allowing multgtling to be applied at a very granular level witrperformance
penalty. This is useful when leveraging multicoreqessors to execute computationally intensive ¢ogearallel in
“divide-and-conquer” style.

The thread pool also keeps a lid on the total nurobworker threads it will run simultaneously. Tomny active
threads throttle the operating system with admiaiste burden and render CPU caches ineffectiveeQnlimit is
reached, jobs queue up and start only when anbthehes. This makes arbitrarily concurrent applamas possible,
such as a web server. (Tagynchronous method patteman advanced technique that takes this furthendking
highly efficient use of the pooled threads; we diégcthis in Chapter 23 of C# 4.0 in a Nutshell).

There are a number of ways to enter the thread pool
- Via the Task Parallel Library (from Framework 4.0)
Bycaling ? K J |
- Via asynchronous delegates
- ViaF ! !

The following constructs use the thread piodirectly.
WCF, Remoting, ASP.NET, and ASMX Web Services aggtion servers

and
Framework methods that endAsyng¢ such as those or((the event-based asynchronous pattefn),
and mosF methods (th@synchronous programming mogbelttern)

PLINQ

TheTask Parallel Library(TPL) and PLINQ are sufficiently powerful and hitgvel that you'll want to use them to
assist in multithreading even when thread poolingriimportant. We discuss these in detail in Patight now, we'll
look briefly at how you can use the class as a simple means of running a delegatepoolad thread.

There are a few things to be wary of when usinggmbthreads:

You cannot setthe of a pooled thread, making debugging more diffi¢although you can attach a
description when debugging in Visual Studio’s Thi®aindow).

Pooled threads are always background threadsigthisually not a problem).

Blockmg a pooled thread may trigger additiona¢taty in the early life of an application unless yaill
: (see Optimizing the Thread Pool).

You are free to change the priority of a pooleeaitk—it will be restored to normal when releasedkhtadhe
pool.

You can query if you're currently executing on afeal thread via the property
(, ?

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 14

Entering the Thread Pool via TPL

You can enter the thread pool easily using the classes in the Task Parallel Library. The classes were
introduced in Framework 4.0: if you're familiar withe older constructs, consider the nongeneric class a
replacementfor ? K J |, , and the generic!% = > a replacement for asynchronous

delegates. The newer constructs are faster, moneeogent, and more flexible than the old.

To use the nongeneric! class, call !; 5 , passing in a delegate of the target method:
!
I 5.
+
(7)< : 6)
+
l; 5 returnsa ! object, which you can then use to monitor the-tafek instance, you can

wait for it to complete by calling its method.

Any unhandled exceptions are conveniently rethromto the host thread when you call a task's method.
(If you don't call and abandon the task, an unhandled exceptiorskuill down the process as with an

ordinary thread.)

The generic 1% = > class is a subclass of the nongenetic . It lets you get a return value back from the task
after it finishes executing. In the following exalmpwe download a web page usingo= >

I* L
% > 1 I; 5
>/ YL M)
I * L
= @
12 # M = L
t2 r # 0!
"L
+
/
5 0O

+
(The% > type argument in boldface is for clarity: it wolddinferredif we omitted it.)

Any unhandled exceptions are automatically rethresaen you query the task's property, wrapped in an
- I* : . However, if you fail to query its property (and don’t call) any unhandled
exception will take the process down.

The Task Parallel Library has many more featured,ig particularly well suited to leveraging mudiie processors.
We'll resume our discussion of TPL in Part 5.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 15

Entering the Thread Pool Without TPL

You can't use the Task Parallel Library if youaegeting an earlier version of the .NET Framewqiof to 4.0).
Instead, you must use one of the older constroctsritering the thread pool: ? K J |, and
asynchronous delegates. The difference betweemvthis that asynchronous delegates let you retata fitom the
thread. Asynchronous delegates also marshal argpégo back to the caller.

QueueUserWorkltem

TouseK J |, , simply call this method with a delegate that yeant to run on a pooled thread:
?KJI L.
? KJ I, .#&BC
(=7
+
08 0
(7 < " 1 6)
+
@ :L
< " : 6
< " : 6&BC
Our target method, , must accept a singleés argument (to satisfy the (0 ! delegate). This provides a
convenient way of passing data to the method likestwvith ? A . Unlike with I |
K J | doesn't return an object to help you subsequemdlyage execution. Also, you must explicitly

deal with exceptions in the target code—unhandieggtions will take down the program.

Asynchronous delegates

? K J doesn't provide an easy mechanism for getting'netalues back from a thread
after it has finished executing. Asynchronous dafegnvocations (asynchronous delegates for sholip this,
allowing any number of typed arguments to be passedth directions. Furthermore, unhandled exosstion
asynchronous delegates are conveniently rethrowtheoriginal thread (or more accurately, the tHréwat calls
I, !), and so they don't need explicit handling.

Don't confuse asynchronous delegates with asyncu®methods (methods starting wigaginor End, such
as; F = l; 1=). Asynchronous methods follow a similar protocotwardly, but they
exist to solve a much harder problem, which we idiesén Chapter 23 of C# 4.0 in a Nutshell.

Here’s how you start a worker task via an asynobwsrdelegate:

1. Instantiate a delegate targeting the method you tearun in parallel (typically one of the predefi

delegates).
2. CalF , ! on the delegate, saving jts = return value.
F o,
3. When you need the results, call ! on the delegate, passing in the saved= object.

In the following example, we use an asynchronousgdge invocation to execute concurrently withriegn thread, a
simple method that returns a string’s length:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 16

I, ! does three things. First, it waits for the asypaus delegate to finish executing, if it hasreaty.
Second, it receives the return value (as well s an or parameters). Third, it throws any unhandled worker
exception back to the calling thread.

If the method you're calling with an asynchronoesedate has no return value, you are still (tedcilyic
obliged to call , ! . In practice, this is open to debate; there are nd police to administer
punishment to noncompliers! If you choose not b Ica ! , however, you'll need to consider excepti
handling on the worker method to avoid silent ek

You can also specify a callback delegate whenrapHi , ! —a method accepting an = object
that's automatically called upon completion. THisws the instigating thread to “forget” about th&ynchronous
delegate, but it requires a bit of extra work &t ¢hllback end:

% # > !
F,l) W #

The final argument t& , ! is a user state object that populates-the property of- = Lt
can contain anything you like; in this case, weising it to pass the delegate to the completion callback, so we
cancalll , ! on it.

Optimizing the Thread Pool

The thread pool starts out with one thread in sl pAs tasks are assigned, the pool manager tsij@ew threads to
cope with the extra concurrent workload, up to aimam limit. After a sufficient period of inactiwit the pool
manager may “retire” threads if it suspects thahgso will lead to better throughput.

You can set the upper limit of threads that thel polb create by calling ? * ; the defaults
are:

1023 in Framework 4.0 in a 32-bit environment
32768 in Framework 4.0 in a 64-bit environment
250 per core in Framework 3.5

25 per core in Framework 2.0

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 17

(These figures may vary according to the hardwateaperating system.) The reason there are thay ieda ensure

progress should some threads be blocked (idlingevetwaiting some condition, such as a response &roemote
computer).

You can also set a lower limit by calling ? . The role of the lower limit is subtler: it's an
advanced optimization technique that instructspib® manager not tdelayin the allocation of threads until reaching
the lower limit. Raising the minimum thread coumpiroves concurrency when there are blocked thresagssidebar).

The default lower limit is one thread per processe—the minimum that allows full CPU utilizatio@n
server environments, though (such ASP.NET undgr the lower limit is typically much higher—as muah
50 or more.

How Does the Minimum Thread Count Work?

Increasing the thread pool’s minimum thread coamtdoesn’t actually force threads to be created right
away—threads are created only on demand. Rathaestiticts the pool manager to create up tlareads the
instantthey are required. The question, then, is why dadlué thread pool otherwise delay in creating astir
when it's needed?

The answer is to prevent a brief burst of shordiactivity from causing a full allocation of thosa suddenly
swelling an application’s memory footprint. To Bluate, consider a quad-core computer runningeafcli
application that enqueues 40 tasks at once. If esthperforms a 10 ms calculation, the whole thiiigbe
over in 100 ms, assuming the work is divided amitwegfour cores. Ideally, we’'d want the 40 tasksutoon
exactly four threads

Any less and we’d not be making maximum use ofaalt cores.

Any more and we’'d be wasting memory and CPU tineating unnecessary threads.
And this is exactly how the thread pool works. Mg the thread count to the core count allowsogiam to
retain a small memory footprint without hurting fsemance—as long as the threads are efficientld use
(which in this case they are).
But now suppose that instead of working for 10 eash task queries the Internet, waiting half asédor a
response while the local CPU is idle. The pool ng@n'a thread-economy strategy breaks down; it woohd
do better to create more threads, so all the latequneries could happen simultaneously.
Fortunately, the pool manager has a backup plats. ¢ueue remains stationary for more than haeond, it
responds by creating more threads—one every hetfrgk—up to the capacity of the thread pool.
The half-second delay is a two-edged sword. Omtieshand, it means that a one-off burst of briéf/dg
doesn’t make a program suddenly consume an extracessary 40 MB (or more) of memory. On the other
hand, it can needlessly delay things when a pablezhd blocks, such as when querying a databasallorg

o / . For this reason, you can tell the pool managétadelay in the allocation of the

first x threads, by calling , for instance:

? 3%# 3%
(The second value indicates how many threads tgrass /O completion ports, which are used by MM,
described in Chapter 23 of C# 4.0 in a Nutshell.)

The default value is one thread per core.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

18

Part 2: Basic Synchronization

Synchronization Essentials

So far, we've described how to start a task onreaith configure a thread, and pass data in botiettbns. We've also
described how local variables are private to aath@nd how references can be shared among thedksgng them to
communicate via common fields.

The next step isynchronizationcoordinating the actions of threads for a preditet outcome. Synchronization is
particularly important when threads access the s#atee it's surprisingly easy to run aground irsthiea.

Synchronization constructs can be divided into fmategories:
Simple blocking methods

These wait for another thread to finish or for sigmbof time to elapse. : ,9 ,and ! are simple
blocking methods.

Locking constructs

These limit the number of threads that can perfeome activity or execute a section of code at a.tfifrclusive

locking constructs are most common—these allowqustthread in at a time, and allow competing tisda

access common data without interfering with eatleotThe standard exclusive locking constructs dre

(I / I*), * ,and: 7! . The nonexclusive locking constructs are ,
' , and the reader/writer locks.

Signaling constructs

These allow a thread to pause until receiving #ioation from another, avoiding the need for inegnt polling.
There are two commonly used signaling devices: eweit handles and 's 1? methods.
Framework 4.0 introduces tlie | andF classes.

Nonblocking synchronization constructs

These protect access to a common field by callp@niprocessor primitives. The CLR and C# provide th
following nonblocking constructs: F , N = , N ,
the keyword, and the ! class.

Blocking is essential to all but the last categdmst’s briefly examine this concept.

Blocking

A thread is deemeblockedwhen its execution is paused for some reason, asiethen : ing or waiting for another
to end via9 orl , ! . A blocked thread immediateljeldsits processor time slice, and from then on
consumes no processor time until its blocking ciowliis satisfied. You can test for a thread bditagked via its

property:
00! @] 9 6%

(Given that a thread’s state may change in betwesting its state and then acting upon that inféionathis code is
useful only in diagnostic scenarios.)

When a thread blocks or unblocks, the operatingesyperforms @ontext switchThis incurs an overhead of a few
microseconds.

Unblocking happens in one of four ways (the compaifgower button doesn't count!):

by the blocking condition being satisfied
by the operation timing out (if a timeout is spesdt)

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 19

by being interrupted via Thread.Interrupt
by being aborted via Thread.Abort

A thread is not deemed blocked if its executiopassed via the (deprecated) Suspend method.

Blocking Versus Spinning

Sometimes a thread must pause until a certain tonds met. Signaling and locking constructs aegithis efficiently
by blocking until a condition is satisfied. Howey#tere is a simpler alternative: a thread can avaondition by
spinningin a polling loop. For example:

6:
or:
/| 5% *

In general, this is very wasteful on processor tiasefar as the CLR and operating system are coedethe thread is
performing an important calculation, and so geltscated resources accordingly!
Sometimes a hybrid between blocking and spinningséd:

6: D &$
Although inelegant, this is (in general) far mofficeent than outright spinning. Problems can arib®ugh, due to
concurrency issues on the flag. Proper use of locking and signaling avos.t

Spinningvery brieflycan be effective when you expect a condition tedtesfied soon (perhaps within a few
microseconds) because it avoids the overhead tenthaof a context switch. The .NET Framework pdegi
special methods and classes to assist—see “SpirdmtiSpinWait”.

ThreadState

You can query a thread's execution status via its property. This returns a flags enum of type

, which combines three “layers” of data in a bievfashion. Most values, however, are redundant,
unused, or deprecated. The following diagram shmwes“layer”:

WaitSleepJoin

[
Abort
Thread Thread
Blocks Unblocks
v
B Abort
- Requested
ResetAbort
| in
Thread Thread | theory
| only!
S‘opped
The following code strips a to one of the four most useful valugs: = ,
9 ,and :
:0
O J P
9 P

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 20

The property is useful for diagnostic purposes, buguitable for synchronization, because a thread'’s
state may change in between testing and acting on that information.

Locking

Exclusive locking is used to ensure that only dwedd can enter particular sections of code ahe. frhe two main
exclusive locking constructs are and * . Ofthe two, the ! construct is faster and more convenient.
though, has a niche in that its lock can span agfiins in different processes on the computer.

In this section, we’ll start with the! construct and then move ontoc and semaphores (for nonexclusive
locking). Later, we’ll cover reader/writer locks.

From Framework 4.0, there is also the ! struct for high-concurrency scenarios (see fieatisn).

Let’s start with the following class:

3
Q & &Q B &

"Q B6$(7 Q&Q B

QBS$

+
+

This class is not thread-safe: if was called by two threads simultaneously, it wcaddoossible to get a division-by-
zero error, becausg B could be set to zero in one thread right as therahread was in between executing the
statement and 7

Here’s how ! can fix the problem:

08 Q! 08
Q &#Q B
!
"Q B6$(7 Q&0 B
QBS
+
+
+
Only one thread can lock the synchronizing objecthis case() !) at a time, and any contending threads are

blocked until the lock is released. If more thae ¢tiread contends the lock, they are queued oaaalyrqueue” and
granted the lock on a first-come, first-served éaicaveat is that nuances in the behavior of Wiuscand the CLR
mean that the fairness of the queue can sometimemlated). Exclusive locks are sometimes saiehnforceserialized
access to whatever’s protected by the lock, becans¢hread’s access cannot overlap with that oftem. In this case,
we're protecting the logic inside the method, as well as the fiel@s & andQ B .

A thread blocked while awaiting a contended lock Aa of 9 . In Interrupt and Abort, we
describe how a blocked thread can be forcibly sgdavia another thread. This is a fairly heavy-dathnique that
might be used in ending a thread.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 21

A Comparison of Locking Constructs

Construct Purpose Cross- Overhead*
process?
L I / _ - 20ns
|*) Ensures just one thread can access a resourge
(or section of code) at a time
* Yes 1000ns
: (introduced in . - 200ns
Framework 4.0) Ensures not more than a specified number of
concurrent threads can access a resource
Yes 1000ns
= 7! - 40ns
(introduced in Framework 3.5)| Allows multiple readers to coexist with a single
= 71 writer - 100ns

(effectively deprecated)

*Time taken to lock and unlock the construct onnetee same thread (assuming no blocking), as medsur
an Intel Core i7 860.

Monitor.Enter and Monitor.Exit

C#'s | statementis in fact a syntactic shortcut for latoghe methods | and [* , With a
I block. Here’s (a simplified version of) what's aally happening within the method of the preceding
example:
1 $
"Q B6$(7 Q& QB
QBS$
+
' #0 ! $ +
Calling [* without first calling I on the same object throws an exception.

The lockTaken overloads

The code that we just demonstrated is exactly WeaC# 1.0, 2.0, and 3.0 compilers produce in taging a !
statement.

There’s a subtle vulnerability in this code, howew@onsider the (unlikely) event of an exceptiombehrown within

the implementation of | , or between the callto | and the block (due, perhaps, to
-0 being called on that thread—or @n @" I* : being thrown). In such a scenario, the lock may or
may not be taken. If the loék taken, it won't be released—because we’ll neveereihe /" block. This will

result in a leaked lock.
To avoid this danger, CLR 4.0’s designers addeddh@wing overload to |
:0 | 08 08# &
I is false after this method if (and only if) the =~ method throws an exception and the lock was rkatrta
Here’s the correct pattern of use (which is exalatiw C# 4.0 translates & statement):
& $

| Q'#
;o
+

QI +

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 22

TryEnter

also provides a | method that allows a timeout to be specified,ezith milliseconds or as a

. The method then returns if a lock was obtained, ¢r if no lock was obtained because the method
timed out. | can also be called with no argument, which “tetitg”’lock, timing out immediately if the lock
can’t be obtained right away.

As with thel method, it's overloaded in CLR 4.0 to accept!a argument.

Choosing the Synchronization Object

Any object visible to each of the partaking threads be used as a synchronizing object, subjemédchard rule: it
must be a reference type. The synchronizing oligegpically private (because this helps to enchgtsithe locking
logic) and is typically an instance or static fielthe synchronizing object can double as the olifsgbrotecting, as the
Q field does in the following example:

7% >Q 7 % >

'Q
Q -) &

A field dedicated for the purpose of locking (sa=Q ! , in the example prior) allows precise control otrex
scope and granularity of the lock. The containibgeot ()—or even its type—can also be used as a synclatmiz
object:

! +
or:

P +
The disadvantage of locking in this way is that'y@mot encapsulating the locking logic, so it bees harder to

prevent deadlocking and excessive blocking. A locla type may also seep through application dotmaimdaries
(within the same process).

You can also lock on local variables captured Inytida expressions or anonymous methods.

Locking doesn't restrict access to the synchrogizibject itself in any way. In other words,
will not block because another thread has called ; both threads must call! * in order for
blocking to occur.

When to Lock

As a basic rule, you need to lock around accessiygnritable shared fieldeven in the simplest case—an assignment

operation on a single field—you must consider syogization. In the following class, neither the nor the
- method is thread-safe:
K
Q*
: Q™ +
- Q* &BC +
+
Here are thread-safe versions of and-

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 23

08 Q! 08
Q*
. 1Q QU+

- Q! Q* &BC +
+

In Nonblocking Synchronization, we explain how theed arises, and how the memory barriers and the
class can provide alternatives to locking in th&gations.

Locking and Atomicity
If a group of variables are always read and writtéhin the same lock, you can say the variablesraad and written
atomically. Let's suppose fields and are always read and assigned withinla on object !

LLo"*6$ *+

One can say and are accessed atomically, because the code blociothe divided or preempted by the actions of
another thread in such a way that it will change andinvalidate its outcomeYou’ll never get a division-by-zero
error, providing: and are always accessed within this same exclusive loc

The atomicity provided by a lock is violated if erception is thrown within a! block. For example,
consider the following:
Q F #Q IF

1 Q !

Q F

Q F 1 '.FUI

+

+
If an exception was thrown byF !; , the bank would lose money. In this case, we cautzd the
problem by calling F !, earlier. A solution for more complex cases ismplement “rollback” logic
within a or" block.

Instructionatomicity is a different, although analogous cqaican instruction is atomic if it executes indilly on the
underlying processor (see Nonblocking Synchrorizgti
Nested Locking

A thread can repeatedly lock the same object iested (eentran) fashion:

or:
I ! I ! I !
* 1 * ! * !

In these scenarios, the object is unlocked onlynithe outermost! statement has exited—or a matching number of
* statements have executed.

Nested locking is useful when one method callsfzarodithin a lock:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 24

08 Q! 08

! C 7)+

+

A thread can block on only the first (outermostko

Deadlocks

A deadlock happens when two threads each wait fesaurce held by the other, so neither can prodeesleasiest
way to illustrate this is with two locks:

08 !'& 08
08 !B 08
>
I o1&
&3S
'$ 0
+
+
1B
 &$$$
*$ ©
+

More elaborate deadlocking chains can be creattdtiiee or more threads.

The CLR, in a standard hosting environment, isliketSQL Server and does not automatically detadt a
resolve deadlocks by terminating one of the offesid& threading deadlock causes participating tise¢a
block indefinitely, unless you've specified a loafgitimeout. (Under the SQL CLR integration hosthuwer,
deadlocksare automatically detected and a [catchable] excepsighrown on one of the threads.)

Deadlocking is one of the hardest problems in rtiukiading—especially when there are many interedlabjects.
Fundamentally, the hard problem is that you cam'$ure what locks yowaller has taken out.

So, you might innocently lock private fieldwithin your class, unaware that your caller (or caller's caller) Amsady
locked field0 within class . Meanwhile, another thread is doing the reversesatang a deadlock. Ironically, the
problem is exacerbated by (good) object-orientesigihepatterns, because such patterns create eatisctihat are not
determined until runtime.

The popular advice, “lock objects in a consistadieo to avoid deadlocks,” although helpful in onitial example, is
hard to apply to the scenario just described. Aebetrategy is to be wary of locking around cgllimethods in objects
that may have references back to your own objdsb,Aonsider whether you really need to lock adocailing
methods in other classes (often you do—as we’llaee—but sometimes there are other options).iRglgnore on
declarative and data parallelism, immutable types, nonblocking synchronization constructs, casdeghe need for
locking.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 25

Here is an alternative way to perceive the problMhen you call out to other code while holding eklathe
encapsulation of that lock subtlaks This is not a fault in the CLR or .NET Framewadblgt a fundamental
limitation of locking in general. The problems otking are being addressed in various researcleqsyj
including Software Transactional Memary

Another deadlocking scenario arises when calling , ! (in a WPF application) ar , ! (in
a Windows Forms application) while in possession tifck. If the Ul happens to be running anothethoe that's
waiting on the same lock, a deadlock will happghtrihere. This can often be fixed simply by calin , !

instead of ! . Alternatively, you can release your lock befoadling, ! , although this won't work if your
caller took out the lock. We explain ! andF , ! in Rich Client Applications and Thread Affinity.
Performance

Locking is fast: you can expect to acquire anda®tea lock in as little as 20 nanoseconds on a-2fd6omputer if the
lock is uncontended. If it is contended, the consatjal context switch moves the overhead closéngamicrosecond
region, although it may be longer before the thrieaattually rescheduled. You can avoid the cost afntext switch
withthe : 7 ! class—if you're locking very briefly (see finalct®n).

Locking can degrade concurrency if locks are hetddo long. This can also increase the chanceadlidbck.

Mutex

A * islikeaC# ! |, butitcan work across multiple processes. leottords, * can becomputer-wideas
well asapplication-wide

Acquiring and releasing an uncontendeti takes a few microseconds—about 50 times slower aha

Witha =* class, you call the @ method to lock and * to unlock. Closing or disposing a*
automatically releases it. Just as with tHe statement, a * can be released only from the same thread that
obtained it.

A common use for a cross-process s to ensure that only one instance of a programran at a time. Here's how
it's done:

@ -- ?
5 * 0 :1 J 2
M # J=7
o) @-- /)
#
6 * @ ; C#
(7) " : F 6)
+
=7
+
+
=?
(7)= 21 >)
(=7

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 26

If running under Terminal Services, a computer-wide is ordinarily visible only to applications in the
same terminal server session. To make it visiblteerminal server sessions, prefix its name v@tbobal\

Semaphore

A semaphore is like a nightclub: it has a certapacity, enforced by a bouncer. Once it’s fullnore people can
enter, and a queue builds up outside. Then, fdr pacson that leaves, one person enters from t dfethe queue.
The constructor requires a minimum of two argumethis number of places currently available in tighttlub and the
club’s total capacity.

A semaphore with a capacity of one is similar to’a or ! , except that the semaphore has no “owner"—it’s
thread-agnosticAny thread can ca# ona : , Wwhereas with * and ! , only the thread that
obtained the lock can release it.

There are two functionally similar versions of thiass: : and : . The latter was
introduced in Framework 4.0 and has been optimiaedeet the Iow-latency demands of parallel
programming. It's also useful in traditional muitieading because it lets you specify a cancellat&en when
waiting. It cannot, however, be used for interpsscsignaling.

incurs about 1 microsecond in calling® or= . incurs about a
quarter of that.

Semaphores can be useful in limiting concurrencyev@nting too many threads from executing a pagicpiece of
code at once. In the following example, five threag to enter a nightclub that allows only thrieeeds in at once:

(0 5 6
Q c (C

& %3

+
| 08

« 77)

'+ $

(7 ') 6 @
D &SR 0

«c 7.9)

! $

t oy

WWNRWWMOO W W R R
(o]

Ifthe : statement was instead performing intensive didk tihe : would improve overall performance
by limiting excessive concurrent hard-drive activit

A , if named, can span processes in the same way 4s a.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 27

Thread Safety

A program or method is thread-safe if it has netedminacy in the face of any multithreading scendrhread safety
is achieved primarily with locking and by reducithg possibilities for thread interaction.

General-purpose types are rarely thread-safe ineéhérety, for the following reasons:

The development burden in full thread safety casipeificant, particularly if a type has many figltkach field is a
potential for interaction in an arbitrarily multiaded context).

Thread safety can entail a performance cost (payabpart, whether or not the type is actuallydulsg multiple
threads).

A thread-safe type does not necessarily make thgrgm using it thread-safe, and often the work lvea in the
latter makes the former redundant.

Thread safety is hence usually implemented justreviieneeds to be, in order to handle a specifittithteading
scenario.

There are, however, a few ways to “cheat” and hange and complex classes run safely in a multitheel
environment. One is to sacrifice granularity by pping large sections of code—even access to areastiject—within
a single exclusive lock, enforcing serialized ascaasa high level. This tactic is, in fact, essarfiyou want to use
thread-unsafe third-party code (or most Framewgplks, for that matter) in a multithreaded conté&kie trick is simply
to use the same exclusive lock to protect acceal pwoperties, methods, and fields on the threaskfe object. The
solution works well if the object’'s methods all exte quickly (otherwise, there will be a lot of bking).

Primitive types aside, few .NET Framework typesewlinstantiated, are thread-safe for anything rttaa
concurrent read-only access. The onus is on theldiger to superimpose thread safety, typically with
exclusive locks. (The collections in ((are an exception.)

Another way to cheat is to minimize thread inteicacby minimizing shared data. This is an excellgpproach and is
used implicitly in “stateless” middle-tier appligat and web page servers. Since multiple clientests can arrive
simultaneously, the server methods they call meshtead-safe. A stateless design (popular fooreasf scalability)
intrinsically limits the possibility of interactigrsince classes do not persist data between regUdstad interaction is
then limited just to the static fields one may ck®to create, for such purposes as caching commsely data in
memory and in providing infrastructure servicestsas authentication and auditing.

The final approach in implementing thread safetypiase an automatic locking regime. The .NET Fraork does
exactly this, if you subclags *F @08 and apply the A attribute to the class. Whenever a
method or property on such an object is then caladbbject-wide lock is automatically taken foe thihole execution

of the method or property. Although this reducesttiread-safety burden, it creates problems a@fits: deadlocks that
would not otherwise occur, impoverished concurreacyl unintended reentrancy. For these reasonsjahltking is
generally a better option—at least until a lesspdistic automatic locking regime becomes available.

Thread Safety and .NET Framework Types

Locking can be used to convert thread-unsafe autdethiread-safe code. A good application of thihés.NET
Framework: nearly all of its nonprimitive types @@ thread-safe (for anything more than read-acless) when
instantiated, and yet they can be used in multitheel code if all access to any given object isquted via a lock.
Here’s an example, where two threads simultaneadidlyan item to the sarie collection, then enumerate the list:

7 % >Q 7 % >

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 28

'Q Q -))Q (

GH

Q. Q -
. (o
+
+

In this case, we're locking on tli@ object itself. If we had two interrelated listsg would have to choose a
common object upon which to lock (we could nomir@te of the lists, or better: use an independefa)fi

Enumerating .NET collections is also thread-ungatbe sense that an exception is thrown if theidisnodified during
enumeration. Rather than locking for the duratibermumeration, in this example we first copy thesris to an array.
This avoids holding the lock excessively if whateeloing during enumeration is potentially timeasaming.
(Another solution is to use a reader/writer lock.)

Locking around thread-safe objects

Sometimes you also need to lock around accessiagdksafe objects. To illustrate, imagine thatfremework’s7
class was, indeed, thread-safe, and we want taadem to a list:

"6Q (Q-

Whether or not the list was thread-safe, this stat# is certainly not! The wholé statement would have to be
wrapped in a lock in order to prevent preemptiobeétween testing for containership and adding #we item. This
same lock would then need to be used everywhemaadkfied that list. For instance, the following tstaent would
also need to be wrapped in the identical lock:

Q (

to ensure that it did not preempt the former statgtimn other words, we would have to lock exaeywith our thread-
unsafe collection classes (making the class’s hypothetical thread safety redundant).

Locking around accessing a collection can causesskee blocking in highly concurrent environmeiiis.this
end, Framework 4.0 provides a thread-safe queaek,stnd dictionary (see “Concurrent Collections”).

Static methods

Wrapping access to an object around a custom lacksaonly if all concurrent threads are aware of-d-ase—the
lock. This may not be the case if the object isaljidscoped. The worst case is with static membreasgublic type. For

instance, imagine if the static property on the struct,/ 5 , was not thread-safe, and that two
concurrent calls could result in garbled outpuaexception. The only way to remedy this with exdélocking might
be to lock the type itself— : "/ —before calling 5 . This would work only if all

programmers agreed to do this (which is unlikeigrthermore, locking a type creates problems afuts.

For this reason, static members on/the struct have been carefully programmed to be thsadel. This is a
common pattern throughout the .NET Framewsthtic members are thread-safe; instance membersiat. Following
this pattern also makes sense when writing typepublic consumption, so as not to create impossinlead-safety
conundrums. In other words, by making static meshtbdead-safe, you're programming so as n@rézludethread
safety for consumers of that type.

Thread safety in static methods is something tbatrpust explicitly code: it doesn’t happen autoosadly by
virtue of the method being static!

Read-only thread safety

Making types thread-safe for concurrent read-onbeas (where possible) is advantageous becausansthat
consumers can avoid excessive locking. Many of Ml Framework types follow this principle: collewts, for
instance, are thread-safe for concurrent readers.

Following this principle yourself is simple: if yadlocument a type as being thread-safe for conduread-only access,
don'’t write to fields within methods that a consum@uld expect to be read-only (or lock around dain). For

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 29

instance, in implementing a method in a collection, you might start by compagthe collection’s internal
structure. However, this would make it thread-uaedaf consumers that expected this to be read-only.

Read-only thread safety is one of the reasonsthamnerators are separate from “enumerables”; tveatts can
simultaneously enumerate over a collection becaash gets a separate enumerator object.

In the absence of documentation, it pays to beaasitn assuming whether a method is read-onhainne. A
good example is the class: whenyoucall 5* , its internal implementation requires that i
update private seed values. Therefore, you mustreivck around using the class, or maintain a
separate instance per thread.

Thread Safety in Application Servers

Application servers need to be multithreaded tadle@simultaneous client requests. WCF, ASP.NET ,\Wieth Services
applications are implicitly multithreaded; the sahmdds true for Remoting server applications tree a network
channel such as TCP or HTTP. This means that whigimgvcode on the server side, you must considezad safety if
there’s any possibility of interaction among theetids processing client requests. Fortunately, aydssibility is rare;
a typical server class is either stateless (ndgjebr has an activation model that creates a atpabject instance for
each client or each request. Interaction usualgearonly through static fields, sometimes useaé@hing in memory
parts of a database to improve performance.

For example, suppose you have a J method that queries a database:

J
J =1 +

If this method was called frequently, you could moye performance by caching the results in a static
Here’s a solution that takes thread safety int@ant

J(

I % #J>Q |/ % #J >
J .

J

'Q

"Q .N #

= 0

'Q Q GH

We must, at a minimum, lock around reading and tipdahe dictionary to ensure thread safety. Is thiample, we
choose a practical compromise between simplicity/@erformance in locking. Our design actually ozeat very small
potential for inefficiency: if two threads simulwously called this method with the same previousitetrieved , the
= J method would be called twice—and the dictionaryldde updated unnecessarily. Locking once
across the whole method would prevent this, butldvoreate a worse inefficiency: the entire cacheldide locked up
for the duration of calling J , during which time other threads would be blocketketrievingany user.

Rich Client Applications and Thread Affinity

Both the Windows Presentation Foundation (WPF)\imbdows Forms libraries follow models based ondlre
affinity. Although each has a separate implemeumatihey are both very similar in how they function

The objects that make up a rich client are basedgpily on/: @08 in the case of WPF, @r in
the case of Windows Forms. These objects ianead affinity which means that only the thread that instargittiem
can subsequently access their members. Violatisgttuses either unpredictable behavior, or anpmiareto be
thrown.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 30

On the positive side, this means you don't nedddk around accessing a Ul object. On the negaiide, if you want
to call a member on object X created on anothexatthty, you must marshal the request to thread Y. &m do this
explicitly as follows:

In WPF, call, ! orF , ! on the element’s : object.

In Windows Forms, call ! orF , ! on the control.
, ! andF , ! both accept a delegate, which references the methahe target control that you want to
run., ! workssynchronouslythe caller blocks until the marshal is complé&te., ! worksasynchronousty

the caller returns immediately and the marshalgdest is queued up (using the same message quumtidles
keyboard, mouse, and timer events).

Assuming we have a window that contains a textdailed * , whose content we wish a worker thread to
update, here's an example for WPF:
10 L
0
. A(:
!
+
!
: 3$%% 1 !
Nk))
+
J:
- > * *
) ’ - $
+
+
The code is similar for Windows Forms, except thatcall the{ ’'s), ! method instead:
J:
_ > * *
- $

The Framework provides two constructs to simplifig forocess:
(= !

I continuations

Worker threads versus Ul threads

It's helpful to think of a rich client applicaticas having two distinct categories of threads: Wealds and worker
threads. Ul threads instantiate (and subsequeotiy™) Ul elements; worker threads do not. Workee#ds typically
execute long-running tasks such as fetching data.

Most rich client applications have a single Ul #dgwhich is also the main application thread) padodically spawn
worker threads—either directly or usifg! ! . These workers then marshal back to the main tgathin
order to update controls or report on progress.

So, when would an application have multiple Ul #ug? The main scenario is when you have an applicaith
multiple top-level windows, often calledSingle Document Interfag&DI) application, such as Microsoft Word. Each
SDI window typically shows itself as a separateplagation” on the taskbar and is mostly isolateddtionally, from
other SDI windows. By giving each such window itgmoUl thread, the application can be made moreorsipe.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 31

Immutable Objects

An immutable object is one whose state cannot teeeml—externally or internally. The fields in annmtable object
are typically declared read-only and are fullyialized during construction.

Immutability is a hallmark of functional programmgir-where instead ahutatingan object, you create a new object
with different properties. LINQ follows this paragin. Immutability is also valuable in multithreadimgthat it avoids
the problem of shared writable state—by eliminaimgminimizing) the writable.

One pattern is to use immutable objects to encafesal group of related fields, to minimize lockations. To take a
very simple example, suppose we had two fieldobaws:

Q (:
Q

and we wanted to read/write them atomically. Rathan locking around these fields, we could defireefollowing
immutable class:

:0 ? (
:0
07 (: #

+
Then we could define a single field of that typleng with a locking object:
08 Q 7! 08

? Q
We can now read/write values of that type withaalting a lock for more than a single assignment:
? 3%#) |)
Lo $ (0 &

To read the object, we first obtain a copy of thgot (within a lock). Then we can read its valuéthout needing to
hold on to the lock:

o 1,18 2 3 &

Technically, the last two lines of code are threatk by virtue of the preceding lock performingmaplicit
memory barrier (see part 4).

Note that this lock-free approach prevents incaesisy within a group of related fields. But it doggrevent data from
changing while you subsequently act on it—for tlgmy usually need a lock. In Part 5, we'll see mexamples of
using immutability to simplify multithreading—inddiing PLINQ.

It's also possible to safely assign a new object based on its preceding value (e.g., it's
possible to “increment” the (: value)—without locking over more than one linecotle. In
fact, we can do this without using a single lotkotigh the use of explicit memory barriers,

oV , and spin-waits. This is an advanced techniquehvwvie describe later (se
“SpinLock and SpinWait”).

\14

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 32

Signaling with Event Wait Handles

Event wait handles are used fignaling Signaling is when one thread waits until it reesinotification from another.
Event wait handles are the S|mplest of the siggadionstructs, and they are unrelated to C# evéhtsy come in three
flavors:- = | ., = , and (from Framework 4.Q) | . The former two are
based on the comman < class where they derive all their functionality.

A Comparison of Signaling Constructs

Construct Purpose Cross- | Overhead*
process?
- = Allows a thread to unblock once when it Yes 1000ns
receives a signal from another
= | _ . Yes 1000ns
— Allows a thread to unblock indefinitely whe
T ' . it receives a signal from another (until reset) ~ 40ns
(introduced in Framework 4.0)
(I (introduced in | Allows a thread to unblock when it receives|a- 40ns
Framework 4.0) predetermined number of signals
F (introduced in Implements a thread execution barrier - 80ns
Framework 4.0)
and? Allows a thread to block until a custom - 120ns for a
condition is met ?

*Time taken to signal and wait on the constructeoon the same thread (assuming no blocking), asunea
on an Intel Core i7 860.

AutoResetEvent

An- = | is like a ticket turnstile: inserting a ticketdegxactly one person through. The “auto” in thegk
name refers to the fact that an open turnstileraatizally closes or “resets” after someone stepmugh. A thread
waits, or blocks, at the turnstile by calling@ (wait at this “one” turnstile until it opens), aadicket is inserted by
calling the method. If a number of threads call@ , a queue builds up behind the turnstile. (As Wwittks, the
fairness of the queue can sometimes be violatedadogances in the operating system). A ticketaane from any
thread; in other words, any (unblocked) thread aitbess to the = | objectcan call onitto release
one blocked thread.

You can create an = | in two ways. The first is via its constructor:

=
(Passing into the constructor is equivalent to immediateailing upon it.) The second way to create an
- = is as follows:

I < " # = - =

In the following example, a thread is started whiokeis simply to wait until signaled by anotheread:

F <
I < Q < =
: &$%$?
Q < !

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 33

~

+/—\(O/—\
A
~
T~

5"

Sleep (1000)
wh.Set
time—»

\/
wh.WaitOne —_—
"Waiting" "Notified"

BLOCKED
If is called when no thread is waiting, the handigsbpen for as long as it takes until some thoaedld @

This behavior helps avoid a race between a threadihg for the turnstile, and a thread insertitiglet (“Oops,
inserted the ticket a microsecond too soon, bad leow you'll have to wait indefinitely!”). Howeveralling
repeatedly on a turnstile at which no one is wgitloesn't allow a whole party through when theyvarronly the next
single person is let through and the extra ticke¢s‘wasted.”

Calling= onan = | closes the turnstile (should it be open) withoatting or blocking.

@ accepts an optional timeout parameter, returhing if the wait ended because of a timeout rather than
obtaining the signal.

Caling @ with a timeout of tests whether a wait handle is “open,” withoutdiiag the caller. Bear in
mind, though, that doing this resets the | if it's open.

Disposing Wait Handles

Once you've finished with a wait handle, you cah itsi (method to release the operating system
resource. Alternatively, you can simply drop aferences to the wait handle and allow the garbatjeator to
do the job for you sometime later (wait handleslement the disposal pattern whereby the finalizadisc

(). This is one of the few scenarios where relyinghas backup is (arguably) acceptable, because wai
handles have a light OS burden (asynchronous dekegaly on exactly this mechanism to release their

- = 's wait handle).

Wait handles are released automatically when aticapipn domain unloads.

Two-way signaling

Let’'s say we want the main thread to signal a wotleead three times in a row. If the main threiaopdy calls on
a wait handle several times in rapid successiegnséitond or third signal may get lost, since thekeromay take time
to process each signal.

The solution is for the main thread to wait urttié tworker’s ready before signaling it. This cardbee with another
- = , as follows:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 34

Main Thread

ready.WaitOne
A

new

message="000"

go.Set

Thread =
\ ready.Set ;
E,) ‘ go.WaitOne

Here, we're using a null message to indicate tiattorker should end. With threads that run indefiy, it's important

to have an exit strategy!

Producer/consumer queue

A producer/consumer queue is a common requiremehtéading. Here’s how it works:

A queue is set up to describe work items—or datmuphich work is performed.

When a task needs executing, it's enqueued, altpttia caller to get on with other things.

One or more worker threads plug away in the baakgtopicking off and executing queued items.

ready.WaitOne ready.WaitOne |—
message="aah"
go.Set A
\ y
ready.Set go.WaitOne ready.Set
"ooo " n ahhh "

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

35

The advantage of this model is that you have peezismtrol over how many worker threads executeagoThis can
allow you to limit consumption of not only CPU tigraut other resources as well. If the tasks perfiotensive disk

I/0, for instance, you might have just one workeead to avoid starving the operating system ahdrapplications.

Another type of application may have 20. You caoalynamically add and remove workers throughcaitiieue’s
life. The CLR’s thread pool itself is a kind of jgiucer/consumer queue.

A producer/consumer queue typically holds itemdath upon which (the same) task is performed. kamele, the
items of data may be filenames, and the task nlight encrypt those files.

In the example below, we use a single | to signal a worker, which waits when it runs otbitasks (in
other words, when the queue is empty). We end tirav by enqueing a null task:

Q!
08 Q! 08
K% >Q! K % >
0? (K
Q! !

Q!
+
0 IM 1

Q! Q!IM !

(7)" L) !

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

36

To ensure thread safety, we used a lock to prafmstss to thE % > collection. We also explicitly closed the
wait handle in our : method, since we could potentially create andrdgshany instances of this class within
the life of the application.

Here's a main method to test the queue:

2 (KM 2?2 (K
MIM 1)<)
" $ %&$ "MIM))!
MIM 1). 06)
+
[* M2 /: #
M ! .
+
2" <
?" L &
?" IL B
?" IL C
2" L E
.06
Framework 4.0 provides a new class calfed (% > that implements the functionality of a

producer/consumer queue (see “Concurrent Collegtjon

Our manually written producer/consumer queue ikwgtiuable—not only to illustrate = | and
thread safety, but also as a basis for more sopdistl structures. For instance, if we wantdaanded
blocking queudlimiting the number of enqueued tasks) and alaoted to support cancellation (and remova|)
of enqueued work items, our code would provide>aekent starting point. We'll take the producerisame
gueue example further in our discussion of Wait Bntse.

ManualResetEvent

A =1 functions like an ordinary gate. Calling opens the gate, allowirany number of threads
caling @ to be let through. Calling closes the gate. Threads that cal® on a closed gate will block;
when the gate is next opened, they will be releadleait once. Apart from these differences, a= |

functions like an = |

As with- = | , you can constructa = | in two ways:
& = |
B | < " #l = =
From Framework 4.0, there's another version of | called = | . The

latter is optimized for short waiting times—withetability to opt into spinning for a set numbeitefations. It
also has a more efficient managed implementatiohadiows a to be canceled via a

(! . It cannot, however, be used for interprocessadigg. = |

doesn'’t subclass < ; however, it exposes a< property that returns a < -based
object when called (with the performance profileadfaditional wait handle).

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 37

Signaling Constructs and Performance

Waiting or signalingan = | or = | takes about one microsecond (assuming no
blocking).

I and(I can be up to 50 times faster in short-wait scesabecause
of theIr nonreliance on the operating system adétjous use of spinning constructs.

In most scenarios, however, the overhead of theatiing classes themselves doesn't create a batitened so
is rarely a consideration. An exception is withHtyjgconcurrent code, which we’ll discuss in Part 5.

A =1 is useful in allowing one thread to unblock matlyeo threads. The reverse scenario is covered
by (I

CountdownEvent

(I lets you wait on more than one thread. The ckasgWw to Framework 4.0 and has an efficient fully

managed implementation.

If you're running on an earlier version of the .NEflamework, all is not lost! Later on, we show howvrite a
(I using Wait and Pulse.

To usg(I , instantiate the class with the number of threadsounts” that you want to wait on:
(1 Cc , A))"C
Calling decrements the “count”; calling blocks until the count goes down to zero. For eam
(1Q 51 5# 6%

) &
), B
I 5+ $ (7 & 6

(7)) " I 6)
+

08

Problems for whiclf I is effective can sometimes be solved more easilyguthestructured
parallelismconstructs that we’ll cover in Part 5 (PLINQ ahd ? class).

You can reincrement@ | 's count by calling (. However, if it has already reached zero, this
throws an exception: you can’t “unsignal{a | by calling- (. To avoid the possibility of an
exception being thrown, you can instead call(, which returns if the countdown is zero.

To unsignal a countdown event, call : this both unsignals the construct and resetsoitsit to the original value.

Like = 1 (I exposes a < property for scenarios where some other
class or method expects an obJect based en

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 38

Creating a Cross-Process EventWaitHandle

I < 's constructor allows a “named” < to be created, capable of operating across
multiple processes. The name is simply a strind,ibcan be any value that doesn’t unintentionaedwflict with
someone else’s! If the name is already in use ercéimputer, you get a reference to the same undgrly

I < ; otherwise, the operating system creates a newttgre’s an example:

I < I < " #I = -= #
) (: =0 5)
If two applications each ran this code, they wduddable to signal each other: the wait handle wawdk across all
threads in both processes.

Wait Handles and the Thread Pool

If your application has lots of threads that sperubt of their time blocked on a wait handle, yon peduce the
resource burden by calling ? = ; @08 . This method accepts a delegate that is
executed when a wait handle is signaled. Whilewggting, it doesn’t tie up a thread:

+ + 8 489
1 3:3) 3% $

When the wait handle is signaled (or a timeoutssajp the delegate runs on a pooled thread.

In addition to the wait handle and delegate, ; @08 accepts a “black box” object that it
passes to your delegate method (ratherdike A), as well as a timeout in milliseconds (-1
meaning no timeout) and a boolean flag indicatimgther the request is one-off rather than recurring

= ; @08 is particularly valuable in an application sertlgat must handle many concurrent

requests. Suppose you need to block ona | and simply call @

Q @

*

+

If 100 clients called this method, 100 server tieeaould be tied up for the duration of the bloekageplacing
Q @ with = ; @08 allows the method to return immediately, wastinghreads:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 39

= < ? = ; @08

+
= 08 #0 @
*
+
The data object passed-o allows continuance of any transient data.

WaitAny, WaitAll, and SignalAndWait

In additiontothe , @ , and= methods, there are static methods on the class to crack more
complex synchronization nuts. The- .- ,and - methods perform atomic signaling and
waiting operations on multiple handles. The waitdias can be of differing types (including® and : ,
since these also derive from the abstrast class). = | and(I can also
partake in these methods via theik properties.

- and - have a weird connection to the legacy COM architec these methods requirg

that the caller be in a multithreaded apartmemt,niodel least suitable for interoperability. Thamthread of
a WPF or Windows application, for example, is ueablinteract with the clipboard in this mode. We’l
discuss alternatives shortly.

< - waits for any one of an array of wait handles; - waits on all of the given
handles, atomically. This means that if you waitwo- = | :

- will never end up “latching” both events.
- will never end up “latching” only one event.

- calls onone < , and then calls @ on another < . The atomicity
guarantee is that after signaling the first haniieill jump to the head of the queue in waiting the second handle:
you can think of it as “swapping” one signal foo#rer. You can use this method on a pair of < sto
set up two threads to rendezvous or “meet” at dmeespoint in time. Either = | or = |
will do the trick. The first thread executes thédwing:

< - &# B

whereas the second thread does the opposite:
< - B# &

Alternatives to WaitAll and SignalAndWait

- and - won't run in a single-threaded apartment. Fortelyathere are alternatives. In the case
of - , it's rare that you need its atomicity guaranteeur rendezvous example, for instance, you could
simply call on the first wait handle, and then@ on the other. In The Barrier Class, we'll explget another
option for implementing a thread rendezvous.

In the case of - , an alternative in some situations is to use?the class’s, ! method, which we'll
cover in Part 5. (We'll also cover! s and continuations, and see how(- provides an
alternative to -)

In all other scenarios, the answer is to take dlelevel approach that solves all signaling proldem and?

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 40

Synchronization Contexts

An alternative to locking manually is to lodeclaratively By deriving from(*F @08 and applying the
A attribute, you instruct the CLR to apply lockingt@matically. For example:
= = (*
G A H
:0 -7'L(*F @08
0/
())
: &$$$ 20
C 7)) ! 16
+
+
:0
:0
-7 - 71
" (/
" C
/
+
+
The CLR ensures that only one thread can execute ico" , at a time. It does this by creating a single
synchronizing object — and locking it around eveaif to each of ", 's methods or properties. The scope of
the lock—in this case, the', object—is called aynchronization context
So, how does this work? A clue isinthe A attribute's namespace:
= = (* A(*F @08 can be thought of as a “remote” object, meanihg al
method calls are intercepted. To make this intdropossible, when we instantiate7 ! , the CLR actually
returns a proxy—an object with the same methodspaoperties ofan 7 ! object, which acts as an intermediary.

It's via this intermediary that the automatic loukiakes place. Overall, the interception addsra@umicrosecond to
each method call.

Automatic synchronization cannot be used to pratetic type members, nor classes not derived from
(*F @08 (for instance, a Windows Form).

The locking is applied internally in the same w#gu might expect that the following example wileld the same
result as the last:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 41

G A H
:0 -7'L(*F @08

0/
())
D&
(7))
+
:0
/
/
/
(=7
+
:0
-7
+
+
(Notice that we've sneaked ifa = 7 statement). Because only one thread can execdeeata time in
an object of this class, the three new threadsreisitlain blocked at the ~ method until the method finishes —
which requires the 7 to complete. Hence we end up with the same rasuliefore, but only after pressing the
Enter key. This is a thread-safety hammer almasthbugh to preclude any useful multithreading ivithclass!
Further, we haven't solved a problem describedegaifl - 7 ! were a collection class, for instance, we'd still
require a lock around a statement such as theafislfp assuming it ran from another class:
(>$", = - $

unless this code's class was itself a synchroriized= @08 !

A synchronization context can extend beyond th@ead a single object. By default, if a synchrodizdject is
instantiated from within the code of another, befthre the same context (in other words, one big)ldis behavior

can be changed by specifying an integer flag in A 0 's constructor, using one of the
constants definedinthe A - 0 class:
Constant Meaning
NOT_SUPPORTED Equivalent to not using the Synclreahi attribute
SUPPORTED Joins the existing synchronization context if insi@ed from another
synchronized object, otherwise remains unsyncheshiz
REQUIRED Joins the existing synchronization context if insi@ed from another
(default) synchronized object, otherwise creates a new contex
REQUIRES_NEW Always creates a new synchronizatmmext
So, if object of class A - instantiates an object of class A F , they’ll be given separate
synchronization contexts if A F is declared as follows:
G A A -0 H=<-# >H#+ H
:0 AFL(*F @08

The bigger the scope of a synchronization contbgteasier it is to manage, but the less the oppitytfor useful
concurrency. At the other end of the scale, sepaaichronization contexts invite deadlocks. Faneple:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 42

G A H
/

:0 IL(*F @08
0 /7@
0/ (&5 @ < +
< C 7)) +
+
:0
A T
/B /1
&@ B
B@ &
&/
B/
+
+
Because each instance/of ! is created within ~ —an unsynchronized class—each instance will getsvin
synchronization context, and hence, its own lockeWthe two objects call upon each other, it doéskeé long for the
deadlock to occur (one second, to be precise!)pFbblem would be particularly insidious if the ! and

classes were written by different programming tedbt®ay be unreasonable to expect those respenfsibthe
class to be even aware of their transgressioa)deie know how to go about resolving it. This i€antrast to explicit
locks, where deadlocks are usually more obvious.

Reentrancy

A thread-safe method is sometimes called reento@cuse it can be preempted part way througixésugion, and
then called again on another thread without ikeffIn a general sense, the terms thread-safecenttant are
considered either synonymous or closely related.

Reentrancy, however, has another more sinisteratation in automatic locking regimes. If the A
attribute is applied with the argument true:

G A H

then the synchronization context's lock will be peamarily released when execution leaves the contexhe previous
example, this would prevent the deadlock from odogr obviously desirable. However, a side effadthiat during this
interim, any thread is free to call any methodm ariginal object ("re-entering" the synchroniaatcontext) and
unleashing the very complications of multithreadamg is trying to avoid in the first place. Thighe problem of
reentrancy.

Becauses A H is applied at a class-level, this attribute tugmery out-of-context
method call made by the class into a Trojan fontreacy.

While reentrancy can be dangerous, there are smeefiew other options. For instance, suppose osgmiaplement
multithreading internally within a synchronized sdaby delegating the logic to workers running otgén separate
contexts. These workers may be unreasonably hiddersommunicating with each other or the origioject without
reentrancy.

This highlights a fundamental weakness with aut@rgtnchronization: the extensive scope over whicking is
applied can actually manufacture difficulties thety never have otherwise arisen. These difficuttidsadlocking,
reentrancy, and emasculated concurrency—can makaahkcking more palatable in anything other teample
scenarios.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 43

Part 3. Using Threads

The Event-Based Asynchronous Pattern

The event-based asynchronous pattern (EAP) proadasple means by which classes can offer muititiing
capability without consumers needing to explicgttart or manage threads. It also provides thewatig features:

- A cooperative cancellation model

- The ability to safely update WPF or Windows Forrostools when the worker completes
Forwarding of exceptions to the completion event

The EAP is just a pattern, so these features naustritten by the implementer. Just a few classekerFramework
follow this pattern, most notab¥y ! ! (which we’ll cover next), and0(in 5

Essentially the pattern is this: a class offeraraify of members that internally manage multithiagdsimilar to the
following.

0 o L
0 OGH/ [/ J
0 /] 2 J
0 /] 2 J # &9
:0 I 1, # A 1,
& .1 2 &9 $((1 ,
& & -7 ? $@ ((-
TheR- methods execute asynchronously: in other woreés, start an operation on another thread and thiamre
immediately to the caller. When the operation catgd, the (: event fires—automatically calling ! if
required by a WPF or Windows Forms application sTéent passes back an event arguments objeciothizatins:
- Aflag indicating whether the operation was cand€ley the consumer calling -)
- Anl object indicating an exception that was throwraif/)
- The ! object if supplied when calling the method
Here’s how we can usé('s EAP members to download a web page:
o(
/ (: # >
(
(70)
| 6
(7o L)t
«(7 =77)
J,
+
+
/ - J)L M)
A class following the EAP may offer additional gpsuof asynchronous methods. For instance:
0 / J
o / - J
o / - J # 08 !
o / (: 1< |/ (

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 44

However, these will share the sate - and, F members. Therefore, only one asynchronous operatio
can happen at once.

The EAP offers th@ossibilityof economizing on threads, if its internal implentagion follows the APM (this
is described in Chapter 23 of C# 4.0 in a Nutshell)

We'll see in Part 5 how! s offer similar capabilities—including exceptiomi@rding, continuations, cancellation
tokens, and support for synchronization contextss hakesmplementinghe EAP less attractive—except in simple
cases wherg | ! will do.

BackgroundWorker

F! ! is a helper classinthe (:

namespace for managing a worker thread. It carobsidered a
general-purpose implementation of the EAP, andigesvthe
following features:

A cooperative cancellation model

The ability to safely update WPF or Windows Forrastools
when the worker completes

Forwarding of exceptions to the completion event
A protocol for reporting progress

An implementation of(: allowing it to be sited in
Visual Studio’s designer
F! ! uses the thread pool, which means you should
never call-0 on aF ! ! thread.

Using BackgroundWorker

Here are the minimum steps in usifg ! : ! #$! |
1. InstantiateF ! ! and handle thée ! event.
2. Call= - , optionally with an08 argument.

This then sets it in motion. Any argument passed to! -
will be forwarded td ! s event handler, via the event argument’s
- property. Here's an example:

FI' 1Q0 F! !
Qo/ I'oQy !
Q= 1!-))
(=7
+
0Q/ ! 08 #1 -
!
(7 -))
2" 1]
+
+
F! ! hasa= ! (: event that fires after thee ! event handler has done its job.
Handling= ! (: is not mandatory, but you usually do so in ordegiiery any exception that was

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl.rights reserved. www.albahari.com/threading/ 45

thrownin/ ! . Further, code withina ! (: event handler is able to update user interfacéaisn
without explicit marshaling; code within tlie ! event handler cannot.

To add support for progress reporting:

1. Setthe ! =: 2 property to

2. Periodically cal=: ? from within the/ ! event handler with a “percentage complete” vadung]
optionally, a user-state object.

3. Handle the? (event, querying its event argumer’s ? property.

4. Codeinthe? (event handler is free to interact with Ul contrjoist as with
= I (: . This is typically where you will update a progdsar.

To add support for cancellation:

1. Setthe !' = (property to

2. Periodically check thé ? property from within the ! event handler. Ifit's |, set the
event argument’s property to , and return. (The worker can also Get and exit without
(? being if it decides that the job is too difficult andcian’t go on.)

3. Call(- to request cancellation.

Here’s an example that implements all the preceféintures:

F! 1 Q0
Q F! 1
=7 #
[¢

+

Q/ 1"oQy !

Q7?2 ('0Q? (
Q0= I(: '0Q= !(:

Q= 1!-)k 1)
(7)1 *3)
(=7
"Q0,F QO (-
(=7
+

0Q/ 108 #/ 1 i

$ % &$$ ' BS$
" QO (? (+
QO =:7

S8$$$ 9 " 2
+ " 6
= &BC = H(

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 46

(TE 2?2)

$U
B$U
S$U
V$U
W$U
&$$U
L&BC

AN N

I *3
$U
B$U
S$U

o 1mn -

6

Subclassing BackgroundWorker

Subclassingr ! ! is an easy way to implement the EAP, in cases wbhemeed to offer only
one asynchronously executing method.

F! ! is not sealed and provides a virt@l/ ! method, suggesting another pattern for its use. In
writing a potentially long-running method, you cdwlrite an additional version returning a subcldsse
F! ! , preconfigured to perform the job concurrentlyeTonsumer then needs to handle only the
= 1 (: and? (events. For instance, suppose we wrote a timedooing method called
:0 (
/ % # >.; " # 0 +

+

We could refactor it as follows:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 47

0 ; (I F! # 0
; I "#0
+
+
:0 ; I'LF! [

0/ % # >=

:0 CH#HEF
0 !
l=: ?
P (
+
0 I "# 0L
F O
+
@/ ' -
=:? $#) ! :)
A"
6
(o7 +
X
=:? #).)
+
= ? &$$#) 6)
+
+
Whoever calls ; F! then gets a ! : a wrapper to manage the

background operation with real-world usabilitycéin report progress, can be canceled, is friendly WPF and
Windows Forms applications, and handles exceptigaib

Interrupt and Abort

All blocking methods (suchas: ,9 1, ! , and) block forever if the unblocking condition is neve
met and no timeout is specified. Occasionallyait be useful to release a blocked thread premgfdoelinstance,
when ending an application. Two methods accompliigh

-0

The-0 method is also capable of ending a nonblockedthrestuck, perhaps, in an infinite loep. s
occasionally useful inichescenarios; : is almost never needed.

and-0 can cause considerable trouble: it's preciselybse thepeenlike obvious choices in
solvmg a range of problems that it's worth examintheir pitfalls.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 48

Interrupt

Calling, : on a blocked thread forcibly releases it, throwang , : I*: , as follows:
s +
P (N (), 0) +
(7)'¢
+
.
@ :L
; 016
Interrupting a thread does not cause the threaddounless the , : I* : is unhandled.
If, is called on a thread that’s not blocked, theatreontinues executing until it next blocks, atebhpoint
a , = I*: is thrown. This avoids the need for the followiegt:

! O 9 >$

which is not thread-safe because of the possilfifgreemption between the statement and!

Interrupting a thread arbitrarily is dangerous, boer, because any framework or third-party methodse calling

stack could unexpectedly receive the interrupteiathan your intended code. All it would take is tloe thread to block
briefly on a simple lock or synchronization res@jrand any pending interruption would kick in.Hétmethod isn'’t
designed to be interrupted (with appropriate clgatnde in' blocks), objects could be left in an unusableestat
or resources incompletely released.

Moreover,, is unnecessary: if you are writing the code thatks, you can achieve the same result more
safely with a signaling construct—or Framework ¢ .@ancellation tokens. And if you want to “unbloddmeone
else’s code;0 is nearly always more useful.

Abort

A blocked thread can also be forcibly releasedtsied method. This has an effect similar to calling : ,
exceptthata -0 I*: is thrown instead ofa , : I*: . Furthermore, the
exception will be rethrown at the end of the block (in an attempt to terminate the thread fmod) unless

= -0 is called within the block. In the interim, the thread has a of

Anunhandled -0 I*: is one of only two types of exception that doesaause application
shutdown (the otheris/ J I* :).

The big difference between : and-0 is what happens when it’s called on a threadighadt blocked.
Whereas waits until the thread next blocks before doingthimg, -0 throws an exception on the thread
right where it's executing (unmanaged code excepleus is a problem because .NET Framework codghtribe
aborted—code that is not abort-safe. For exampée) abort occurs while a is being constructed, it's
possible that an unmanaged file handle will renogian until the application domain ends. This ralesusing-0

in almost any nontrivial context.

For more detail on why Abort is unsafe, see Abgrfiitnreads in Part 4.

There are two cases, though, where you can sadelpu . One is if you are willing to tear down a thread’s
application domain after it is aborted. A good epéof when you might do this is in writing a utésting framework.
Another case where you can cdll safely is on your own thread (because you knowethkahere you are).

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 49

Aborting your own thread throws an “unswallowabéxteption: one that gets rethrown after each daitwtk.
ASP.NET does exactly this when you call

LINQPad aborts threads when you cancel a runawayyqiéfter aborting, it dismantles and re-creates t
guery’s application domain to avoid the potentigblluted state that could otherwise occur.

Safe Cancellation

As we saw in the preceding section, calliig on a thread is dangerous in most scenarios. Tamative, then, is to
implement acooperativepattern whereby the worker periodically checkkag that indicates whether it should abort

(like inF ! !). To cancel, the instigator simply sets the flag then waits for the worker to comply.
ThisF ! ! helper class implements such a flag-based catioallpattern, and you easily implement one
yourself.

The obvious disadvantage is that the worker methost be written explicitly to support cancellaticdonetheless, this
is one of the few safe cancellation patterns. lstitate this pattern, we’'ll first write a classeicapsulate the
cancellation flag:

= (
08 Q 7! 08

0Q =M
00 ,(=M
1Q 7! Q =M +
+
0 (1Q 7' Q =M +
0 ' =M
(=M @: ("
+
+
@ (I*: is a Framework type intended for just this purp@segy exception class will

work just as well, though.

We can use this as follows:

C 77X 6)

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 50

@ +
R M R +
+
+
@ = (
/o
(=M
+
+
We could simplify our example by eliminating the (class and adding the static boolean field
Q =M™ to the class. However, doing so would mean that if sdwaraads called ! at once, setting
Q =M™ to would cancel all workers. Our (class is therefore a useful abstraction. Its only

inelegance is that when we look at the method’s signature, the intention is unclear:
= (

Might the ! method itself intend to call on the= (object? In this instance, the answer is no, so
it would be nice if this could be enforced in thpd system. Framework 4.0 providesicellation tokenfor this exact
purpose.

Cancellation Tokens

Framework 4.0 provides two types that formalizedbeperative cancellation pattern that we just destrated:
(! and(! . The two types work in tandem:

A(! defines ¢ method.

A(! defines an (=M property and
S(=M method.

Together, these amount to a more sophisticatedoveos the= (class in our previous example. But
because the types are separate, you can isolaabithig to cancel from the ability to check thencallation flag.

To use these types, first instantiate a ! object:
(!
Then, pass its! property into a method for which you'd like to gt cancellation:
> |

Here’'s how ! would be defined:

F(! !

Lo =M

+

When you want to cancel, simply céll on

(! is actually a struct, although you can treaki la class. When implicitly copied, the
copies behave identically and reference the origina !

The(! struct provides two additional useful members. fitstis < , Which returns a wait
handle that’s signaled when the token is cancdled.second is , Which lets you register a callback delegate
that will be fired upon cancellation.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 51

Cancellation tokens are used within the .NET Fraarktself, most notably in the following classes:

= | and

(|

E

F o

PLINQ and the Task Parallel Library
Most of these classes’ use of cancellation tokems iheir methods. For example, ifyou ona

= | and specify a cancellation token, another thread c its wait. This is much tidier and
safer than calling on the blocked thread.

Lazy Initialization

A common problem in threading is how to lazily ialize a shared field in a thread-safe fashion. ided arises when
you have a field of a type that’s expensive to twies:

& #%, . #%, . 5#%, .3
+
I*: R = *: R +
The problem with this code is that instantiating incurs the performance cost of instantiating —whether
or not thel*: field is ever accessed. The obvious answer igmsteuct the instanaen demand
* Q*
0 kI *

" Q *: Q *: *:

Q™
+
+
+
The question then arises, is this thread-safe?eAsam the fact that we're accessiQg: outside a lock
without a memory barrier, consider what would hapipéwo threads accessed this property at onceyTould both
satisfy the" statement’s predicate and each thread end upawdififerentinstance of*: . As this may lead to

subtle errors, we would say, in general, that¢bide is not thread-safe.

The solution to the problem is to lock around cliegland initializing the object:

* Q*

08 100, / 08
O I (o

1%, /

" Q *: Q *: x:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 52

Lazy<T>

Framework 4.0 provides a new class calle% > to help with lazy initialization. If instantiatesith an argument of
, it implements the thread-safe initialization pattjust described.

7 A% > actually implements a slightly more efficient viersof this pattern, calledouble-checked locking
Double-checked locking performs an additional itdatad to avoid the cost of obtaining a lockhi bbject
is already initialized.

To use7 A % > , instantiate the class with a value factory delediaat tells it how to initialize a new value, ahé

argument . Then access its value via tke property:
TA%* >Q* TA%* >
> Ik #
0 ko™ Q* 0 ++
If you pass' into 7 A % > s constructor, it implements the thread-unsafg latialization pattern that we

described at the start of this section—this makese when you want to uge\ % > in a single-threaded context.

Lazylnitializer

7TA, A is a static class that works exactly liké % > except:

Its functionality is exposed through a static methiat operates directly on a field in your owneyphis avoids a
level of indirection, improving performance in casehere you need extreme optimization.

It offers another mode of initialization that haasltiple threads race to initialize.

Touse7 A, A ,calll . A before accessing the field, passing a referenteetfield and the
factory delegate:
Q=
0 Ko™
, o1 1! !
TA, Al , A "Q=% #
> I®
Q™

+
+

You can also pass in another argument to requasttimpeting threadsceto initialize. This sounds similar to our
original thread-unsafe example, except that tte firead to finish always wins—and so you end ith wnly one
instance. The advantage of this technique is tisa¢ven faster (on multicores) than double-chedkeking—because

it can be implemented entirely without locks. Tisign extreme optimization that you rarely need, ame that comes at
a cost:

It's slower when more threads race to initializartlyou have cores.
It potentially wastes CPU resources performing neldunt initialization.

The initialization logic must be thread-safe (irstbase, it would be thread-unsaféif 's constructor
wrote to static fields, for instance).

If the initializer instantiates an object requiridigposal, the “wasted” object won't get disposéthewut additional
logic.

For reference, here’s how double-checked lockingjgemented:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 53

* Q*

O I (o
" Qw
: I:
1Q* 71 "Q* Q * *
+
Q*
+
+

And here’s how the race-to-initialize pattern iplemented:

* Q*
O I (o

" Q*

Thread-Local Storage

Much of this article has focused on synchronizationstructs and the issues arising from havingattseoncurrently
access the same data. Sometimes, however, youaviae¢p data isolated, ensuring that each thresc Iseparate
copy. Local variables achieve exactly this, buytaee useful only with transient data.

The solution ighread-local storageYou might be hard-pressed to think of a requinetméata you’'d want to keep
isolated to a thread tends to be transient by eatts main application is for storing “out-of-bdrdhta—that which
supports the execution path’s infrastructure, agmessaging, transaction, and security tokensirfigasuch data
around in method parameters is extremely clumsyadirdates all but your own methods; storing suébrimation in
ordinary static fields means sharing it amongtakads.

Thread-local storage can also be useful in optmgigiarallel code. It allows each thread to excleigiaccess
its own version of a thread-unsafe object withaeegding locks—and without needing to reconstruct dhgect
between method calls.

There are three ways to implement thread-locabgtar

[ThreadStatic]
The easiest approach to thread-local storagerisate a static field with the attribute:

G H @
Each thread then sees a separate copy.of
Unfortunately,G H doesn’t work with instance fields (it simply dassthing); nor does it play well with
field initializers—they execute oniynceon the thread that's running when the static coottr executes. If you need to
work with instance fields—or start with a nondefardlue— 7 % > provides a better option.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 54

ThreadLocal<T>

7 %> is new to Framework 4.0. It provides thread-lastalage for both static and instance fields—and
allows you to specify default values.
Here’'s howto createa 7 % > with a default value of for each thread:
7 % >Q* 7 % > >C
You then us&®*s N property to get or set its thread-local value.ohls of using 7 is that values are

lazily evaluated: the factory function evaluategiom first call (for each thread).

ThreadLocal<T> and instance fields

7 %> is also useful with instance fields and captumerhl variables. For example, consider the problém o
generating random numbers in a multithreaded enmiemt. The= class is not thread-safe, so we have to either
lock around using (limiting concurrency) or generate a separate object for each thread.

7 %> makes the latter easy:

- 5 / 5
(7 = N 5*

Our factory function for creating the object is a bit simplistic, though, in that 's parameterless
constructor relies on the system clock for a randomber seed. This may be the same fortwo objects created
within ~10 ms of each other. Here’s one way taitfix

= 7 %= >
> = . 5. .<(

We'll use this in Part 5 (see the parallel speléttiieg example in “PLINQ").

GetData and SetData

The third approach is to use two methods inthe class. / and / . These store data in thread-
specific “slots”. . / reads from a thread’s isolated data store; / writes to it. Both
methods require a / object to identify the slot. The same slot caubed across all threads and

they'll still get separate values. Here’s an exampl

71 08 O

71 Q .5/ y 7))
7
08 Q
4$L A
+
/I Q # +

+

In this instance, we called . 5 / , which creates a named slot—this allows sharintaif slot

across the application. Alternatively, you can colr slot’'s scope yourself by instantiating a/
explicitty—without providing any name:

;5 will release a named data slot across all thrdagspnly once all references to that
7 1 have dropped out of scope and have been garbdlgeted. This ensures that threads don’t get

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 55

data slots pulled out from under their feet, agjlan they keep a reference to the appropriaté
object while the slot is needed.

Timers

If you need to execute some method repeatedlygataeintervals, the easiest way is wittiraer. Timers are
convenient and efficient in their use of memory a@gburces—compared with techniques such as tlosviob:

+
+

Not only does this permanently tie up a threaduss® but without additional coding, - will happen at a
later time each day. Timers solve these problems.

The .NET Framework provides four timers. Two ofdgh@re general-purpose multithreaded timers:

The other two are special-purpose single-threaideets:
(Windows Forms timer)
/: (WPF timer)

The multithreaded timers are more powerful, aceyramnd flexible; the single-threaded timers arersafd more
convenient for running simple tasks that updatedtdms Forms controls or WPF elements.

Multithreaded Timers

is the simplest multithreaded timer: it has jusbastructor and two methods (a delight for
minimalists, as well as book authors!). In thedeling example, a timer calls the method, which writes “tick...”
after five seconds have elapsed, and then eveondedfter that, until the user presses Enter:

36 O M &$$$
5 3 3ABBB3* BBB $
(=7
/: 0
+
1 08
(7) 1)
+
+
You can change a timer’s interval later by callitsgy method. If you want a timer to fire just once, dpe

: in the constructor’s last argument.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 56

The .NET Framework provides another timer clashefsame name in the namespace. This simply
wraps the , providing additional convenience while using ithentical underlying engine.
Here’s a summary of its added features:

A(: implementation, allowing it to be sited in Visi&udio’s designer
An, property instead of @& method
Anl : eventinstead of a callback delegate
Anl 0 property to start and stop the timer (its defaaltie being')
and : methods in case you're confusediby
An- = flag for indicating a recurring event (defaultwalis)
A A @08 property with, ! andF , ! methods for safely calling methods on WPF

elements and Windows Forms controls

Here’s an example:

/| 2 M
3%%
i Q3
(=7
(=7
(=7
/ ?
+
Q: 08 #I -

Multithreaded timers use the thread pool to allofeva threads to serve many timers. This meanstiigatallback

method oil : event may fire on a different thread each tims dalled. Furthermoré,: always fires
(approximately) on time—regardless of whether tfevjpusl : has finished executing. Hence, callbacks or event
handlers must be thread-safe.

The precision of multithreaded timers depends eroiberating system, and is typically in the 10-20region. If you
need greater precision, you can use native intanopcall the Windows multimedia timer. This hascsien down to 1

ms and it is defined iwinmm.dll Firstcall F ? to inform the operating system that you need high
timing precision, and then call | to start a multimedia timer. When you'’re done] cal | to
stop the timer and | ? to inform the OS that you no longer need hightignprecision. You can find

complete examples on the Internet that use theimmedia timer by searching for the keywordbmport winmm.dll
timesetevent

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 57

Single-Threaded Timers

The .NET Framework provides timers designed toielie thread-safety issues for WPF and Windows Eorm
applications:

/- (WPF)
(Windows Forms)

The single-threaded timers are not designed to wotgide their respective environments. If you aise
Windows Forms timer in a Windows Service applicatifor instance, the event won't fire!

Both are like in the members that they expose (N ,and :)and are
used in a similar manner. However, they differ aimtthey work internally. Instead of using the tlt¢mol to generate
timer events, the WPF and Windows Forms timersoalthe message pumping mechanism of their underlyser
interface model. This means that the event always fires on the same thread that ofligineeated the timer—
which, in a normal application, is the same thresed to manage all user interface elements andat®nthis has a
number of benefits:

You can forget about thread safety.

Afresh | will never fire until the previous! has finished processing.

You can update user interface elements and corttii@stly from ! event handling code, without calling
« ! or/ : !

It sounds too good to be true, until you realiza #hprogram employing these timers is not realljtithreaded—there
is no parallel executiorOne thread serves all timers—as well as the psireg4Jl events. This brings us to the
disadvantage of single-threaded timers:

Unless the ! event handler executes quickly, the user interfsm®mes unresponsive.

This makes the WPF and Windows Forms timers s@tfdslonly small jobs, typically those that involupdating some
aspect of the user interface (e.g., a clock or twmwn display). Otherwise, you need a multithreatii@er.

In terms of precision, the single-threaded timeessamilar to the multithreaded timers (tens oflisgiconds), although
they are typically lesaccurate because they can be delayed while other usefanterequests (or other timer events)
are processed.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 58

Part 4. Advanced Topics

Nonblocking Synchronization

Earlier, we said that the need for synchronizatinses even in the simple case of assigning oementing a field.
Although locking can always satisfy this need, ateaded lock means that a thread must block, snfféhe overhead
of a context switch and the latency of being dedalesl, which can be undesirable in highly concuresm
performance-critical scenarios. The .NET Framewsmknblockingsynchronization constructs can perform simple
operations without ever blocking, pausing, or vejti

Writing nonblocking or lock-free multithreaded cogi®perly is tricky! Memory barriers, in particulare easyj
to get wrong (the keyword is even easier to get wrong). Think cdhefhether you really need the
performance benefits before dismissing ordinarkdo®emember that acquiring and releasing an uandet
lock takes as little as 20ns on a 2010-era desktop.

The nonblocking approaches also work across melppbcesses. An example of where this might beulisein
reading and writing process-shared memory.

Memory Barriers and Volatility

Consider the following example:

Q
0 Q:
Q &BC
Q:
+
F
Q: (7 Q

If methods- andF ran concurrently on different threads, might itgaessible for- to write “0"? The answer is yes—for
the following reasons:

- The compiler, CLR, or CPU magorderyour program's instructions to improve efficiency.

- The compiler, CLR, or CPU may introduce cachingrojtations such that assignments to variables van't
visible to other threads right away.

C# and the runtime are very careful to ensureghel optimizations don’t break ordinary single-ttttled code—or
multithreaded code that makes proper use of Iddksside of these scenarios, you must explicithedethese
optimizations by creatinmemory barriergalso callednemory fencgdo limit the effects of instruction reorderingdan
read/write caching.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 59

Full fences

The simplest kind of memory barrier i$ldl memory barrier(full fencg which prevents any kind of instruction
reordering or caching around that fence. Calling F generates a full fence; we can fix our
example by applying four full fences as follows:

Q
0 Q:
Q &BC
7% (7 ¢
Q :
7% (7
+
F
7 $ (7 6
"Q
7 $ (v C
(7 Q

Barriers 1 and 4 prevent this example from writi@y Barriers 2 and 3 provide faeshnesguarantee: they ensure that
if B ran after A, readin@ : would evaluate to

A full fence takes around ten nanoseconds on a-2@d @esktop.

The following implicitly generate full fences:

C#'s | statement(| / i)

All methods on the ! class (we’ll cover these soon)

Asynchronous callbacks that use the thread poolsetirclude asynchronous delegates, APM callbacks
and ! continuations

Setting and waiting on a signaling construct
Anything that relies on signaling, such as startingvaiting on a !

By virtue of that last point, the following is tta@-safe:
*$

! s 5 >+

(7 * &

You don’t necessarily need a full fence with evieidividual read or write. If we had thremswerfields, our example
would still need only four fences:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 60

Q &#Q B#Q C
0 Q:

Q &&Q BBQ CC
! $

7
Q:
"7 $
+
F
"7 %
"Q
7 3
(7 Q &'Q B'Q C

A good approach is to start by putting memory leasrbefore and after every instruction that readsrites a
shared field, and then strip away the ones thatdg't need. If you're uncertain of any, leave themOr
better: switch back to using locks!

Do We Really Need Locks and Barriers?

Working with shared writable fieldsvithout locks or fences is asking for trouble. i@ie a lot of misleading
information on this topic—including the MSDN docuntation which states that F is required
only on multiprocessor systems with weak memoryedrd), such as a system employing multiple Itanium
processors. We can demonstrate that memory baarierisnportant on ordinary Intel Core-2 and Pentium
processors with the following short program. Youdled to run it with optimizations enabled and witha
debugger (in Visual Studio, select Release Modharsolution’s configuration manager, and thent stathout
debugging):

0
>
0
6 6
+
D &$$$
9 F !
+
This programmever terminatebecause the: variable is cached in a CPU register. Inserticglato
F inside the loop (or locking around reading:) fixes the error.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 61

The volatile keyword

Another (more advanced) way to solve this probletoiapply the keyword to the) : field:
0 Q:
The keyword instructs the compiler to generateaaquire-fencen every read from that field, andelease-

fenceon every write to that field. An acquire-fenceymets other reads/writes from being movedorethe fence; a
release-fence prevents other reads/writes fronghmiovedafter the fence. These “half-fences” are faster thah ful
fences because they give the runtime and hardware scope for optimization.

As it happens, Intel’'s X86 and X64 processors ataayply acquire-fences to reads and release-feaces
writes—whether or not you use the keyword—so this keyword has no effect on iaedwareif
you're using these processors. However, doeshave an effect on optimizations performed by the
compiler and the CLR—as well as on 64-bit AMD atwlg greater extent) Itanium processors. This mtaats
you cannot be more relaxed by virtue of your chemninning a particular type of CPU.

(And even if youdo use , you should still maintain a healthy sense of atyxias we’ll see shortly!)

The effect of applying to fields can be summarized as follows:

First instruction ~ Second instruction Can they be swpped?

Read Read No
Read Write No
Write Write No (The CLR ensures that write-writeeogtions are never swapped,
even without the keyword)
Write Read Yes!
Notice that applying doesn’t prevent a write followed by a read fronmigeswapped, and this can create
brainteasers. Joe Duffy illustrates the problem weh the following example: if & and B run simultaneously
on different threads, it's possible forand0 to both end up with a value of 0 (despite theafse on both*
and):
A N N
H
& I*
* & N 1
N M 1
+
B I*
& N 1
0 * N M 1
+
+
The MSDN documentation states that use of the keyword ensures that the most up-to-date value |$
present in the field at all times. This is incotyeince as we've seen, a write followed by a remdbe
reordered.
This presents a strong case for avoiding . even if you understand the subtlety in this exi@mpill other

developers working on your code also understand fifll fence between each of the two assignmemts& and
B (or alock) solves the problem.

The keyword is not supported with pass-by-referengeiiaents or captured local variables: in these cases
you must use the = andN methods.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 62

VolatileRead and VolatileWrite

The staticN = andN methods in the class read/write a variable while enforcing
(technically, a superset of) the guarantees madbey keyword. Their implementations are relatively
inefficient, though, in that they actually generatifences. Here are their complete implementetitor the integer

type:

0 N #
F
+
0 N =
F
+
You can see from this that if you call followed byN = , No barrier is generated in the

middle: this enables the same brainteaser scetiiave saw earlier.

Memory barriers and locking

As we said earlier, | and [* both generate full fences. So if we ignore a lsakutual
exclusion guarantee, we could say that this:
X+

is equivalent to this:

7 X+ "7
Interlocked
Use of memory barriers is not always enough whadirg or writing fields in lock-free code. Operatsoon 64-bit
fields, increments, and decrements require theibeapproach of using the ! helper class, !
also provides th& and(: I* methods, the latter enabling lock-free read-maodifite

operations, with a little additional coding.

A statement is intrinsicallgtomicif it executes as a single indivisible instructimmthe underlying processor. Strict
atomicity precludes any possibility of preemptidnsimple read or write on a field of 32 bits ordés always atomic.
Operations on 64-bit fields are guaranteed to bmiatonly in a 64-bit runtime environment, and staénts that
combine more than one read/write operation arerregeenic:

Q#Q

QA

.
Q*C -
QA C 5 CBI10 QA VSO
7 QA 5 CBI0 QA VSO
Q'Q* 5 5/ :
Q+ 5 5/

+
+

Reading and writing 64-bit fields is nonatomic @it environments because it requires two sepamateuctions: one
for each 32-bit memory location. So, if thread dds a 64-bit value while thread Y is updatinghteid X may end up
with a bitwise combination of the old and new valatorn read.

The compiler implements unary operators of the kind by reading a variable, processing it, and thetingiit back.
Consider the following class:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 63

'y
Q* &3%%
S %eS$S Q11 +
+

Putting aside the issue of memory barriers, yothtrégpect that if 10 threads concurrently run Q* would end up as
$. However, this is not guaranteed, becausgca conditionis possible whereby one thread preempts another in
between retrievin@*'s current value, decrementing it, and writingaick (resulting in an out-of-date value being
written).

Of course, you can address these issues by wrafipgngonatomic operations ina statement. Locking, in fact,
simulates atomicity if consistently applied. The ! class, however, provides an easier and fasteti@olfor
such simple operations:

?
Q
Q
: oL
., "Q &
, " $
-0 L
, - "Q #C C
= VS10 " L
(7 = "Q C
VS10 " : L
X)) Q &$
(7o, b "Q #&$ &$
J " " &S$L
(7, V(i "Q #
&BCH# &$ &BC
+
+
Allof , ! 's methods generate a full fence. Therefore, fidhds$ you access via ! don’t
need additional fences—unless they’re accessether places in your program without ! ora
!
, ! 's mathematical operations are restricted to . , and- . If you want to multiply—
or perform any other calculation—you can do smirkifree style by using the: I* method (typically in

conjunction with spin-waiting). We give an examjie'SpinLock and SpinWait”.

;! works by making its need for atomicity known te thperating system and virtual machine.

! 's methods have a typical overhead of 10 ns—half ®fi an uncontended! . Further, they
can never suffer the additional cost of contextaiving due to blocking. The flip side is that using

! within a loop with many iterations can be lesscéght than obtaining a single loekoundthe
Ioop (although ! enables great@oncurrency.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 64

Signaling with Wait and Pulse

Earlier we discussed Event Wait Handles—a simgleading mechanism where a thread blocks untildeiees
notification from another.

A more powerful signaling construct is providedthg class, via the static methods and? (and
? -). The principle is that you write the signalingjio yourself using custom flags and fields (enatbse !
statements), and then introduce and? commands to prevent spinning. With just these ougtand the !
statement, you can achieve the functionality of | , o= ,and , as well as
(with some caveats) < ’s static methods - and - . Furthermore, and? can be
amenable in situations where all of the wait hasidie parsimoniously challenged.

and? signaling, however, has some disadvantages ot evait handles:

1? cannot span application domains or processescomauter.

You must remember to protect all variables relatetthe signaling logic with locks.

1? programs may confuse developers relying on Midtssdocumentation.
The documentation problem arises because it's Indibas how and? are supposed to be used, even when
you've read up on how they work. and? also have a peculiar aversion to dabblers: thdlyseek out any

holes in your understanding and then delight im&mting you! Fortunately, there is a simple patt#fraose that tames
and?

In terms of performance, callirgy takes around a hundred nanoseconds on a 201@sktd—about a third of the
time it takes to call on a wait handle. The overhead for waiting on mteoded signal is entirely up to you—
because you implement the logic yourself usingrandi fields and variables. In practice, this ispgimple and
amounts purely to the cost of taking &

How to Use Wait and Pulse

Here's how to use and?

1. Define a single field for use as the synchronizatibject, such as:

08 Q! 08
2. Define field(s) for use in your custom blocking dition(s). For example:
00Q ! Q : (
3. Whenever you want to block, include the followirade:
1Q !
" HS
Q!
4. Whenever you change (or potentially change) a lahgckondition, include this code:
Q!
#
" #
? Q! ! ?2 - Q!

This pattern allows any thread to wait at any tforeany condition. Here’s a simple example, whewmeoaker thread
waits until theQ field is set to

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 65

0 Q
0!
| 0 Q
(=7 |
Q! 72 1 0
Q
Q
" I $
+
+
|
1Q !
6Q
R 7! T
(7) !666)
+
+
@ :
1666 " |

For thread safety, we ensure that all shared fisldsaccessed within a lock. Hence, we atld statements around
both reading and updating tle flag. This is essential (unless you're willingfedlow the nonblocking
synchronization principles).

The ! method is where we block, waiting for tQe flag to become . The method does the
following, in order:

1. Releases the lock ap !

2. Blocks untilQ ! is “pulsed.”
3. Reacquires the lock op ! . If the lock is contended, then it blocks unti flock is available.
This means that despite appearannedock is held on the synchronization object while awaits
a pulse:
1Q !
6Q
Q! Q!
!
+
Execution then continues at the next statement. is designed for use within @ statement; it throws an
exception if called otherwise. The same goes for ?
In the method, we signal the worker by setting the flag (within a lock) and callin@ . As soon as we
release the lockhe worker resumes execution, reiterating its loop.
The? and? - methods release threads blocked on a statement? releases a maximum of one
thread;? - releases them all. In our example, just one thigatbcked, so their effects are identical. If emtinan
one thread is waiting, calling - is usuallysafest with our suggested pattern of use.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 66

In order for to communicate with or? - , the synchronizing objec@)(! , in our case)
must be the same.

In our pattern, pulsing indicates ttstmething might have changeohd that waiting threads should recheck their
blocking conditions. Inthe! method, this check is accomplished via the loop. Thewaiter then decides
whether to continueyot the notifier If pulsing by itself is taken as instruction tontinue, the construct is stripped
of any real value; you end up with an inferior vensof an- = |

If we abandon our pattern, removing the loop, theQ flag, and the= 7 , we get a bare-bones /?
example:

Q! Q!
(7) !666)
+
It's not possible to display the output, becausenbndeterministic! A race ensues between the meigad and the
worker. If executes first, the signal works.2f executes first, thpulse is losand the worker remains forever
stuck. This differs from the behavior of an= | , where its method has a memory or “latching” effect,
so it is still effective if called before @

? has no latching effect because you're expectedite the latch yourself, using a “go” flag as wid defore.
This is what makes and? versatile: with a boolean flag, we can make itction as an = | ;
with an integer field, we can write a CountdownBven . With more complex data structures, we can go
further and write such constructs as a producesiomer queue.

Producer/Consumer Queue

Earlier, we described the concept of a producesieorer queue, and how to write one with-an | . We're
now going to write a more powerful version with and? . This time, we’ll allow an arbitrary number of
workers, each with its own thread. We’'ll keep trackhe threads in an array:
GHQ !
This gives us the option 8f ing those threads later when we shut down the queue
Each worker thread will execute a method cafled . We can create the threads and start them ingéedioop as
follows:
0 2K I (
Q! GI(H
: !
$ % I(
Q! GH (
+
Rather than using a simple string to describela tas’ll take the more flexible approach of usindelegate. We'll use
the - delegate in the .NET Framework, which is definedadiows:
:0 -
This delegate matches any parameterless methoderiidta the delegate. We can still represent tasks

that call method with parameters, though—by wragphe call in an anonymous delegate or lambda ezpme:

-

)

C 7))

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 67

- o> 70))y 70 %
To represent a queue of tasks, we’'ll usekhe > collection as we did before:
K % >Q K K % >

Before going into théM and (methods, let’s look first at the complete code:

*

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

68

Again we have an exit strategy: enqueuing a netthisignals a consumer to finish after completing@utstanding
items (if we want it to quit sooner, we could useirependent “cancel” flag). Because we're suppgnnultiple
consumers, we must enqueue one null item per cagrstintompletely shut down the queue.

Here's a method that starts a producer/consumer queueifgpgawo concurrent consumer threads, and then
enqueues 10 delegates to be shared among the hsoroers:

2K M 2K B
(7)M &)
$ %&$ "

50 : 0
MIM , >

@ :L
IM &

& 1% %0%% B IC %0%% IS 13 9%%%
vV ID %%% W E %%%

I 6

Let's look now at the M method:
-0 M, -

Because the queue is used by multiple threads, ugt wrap all reads/writes in a lock. And becaus&enmodifying a
blocking condition (a consumer may kick into actama result of enqueuing a task), we must pulse.

For the sake of efficiency, we call instead of? - when enqueuing an item. This is because (at most)
consumer need be woken per item. If you had justiom cream, you wouldn’t wake a class of 30 skegphildren to
queue for it; similarly, with 30 consumers, thenmatsbenefit in waking them all—only to have 29 spinseless iteration

on their loop before going back to sleep. We wouldn’t breakthing functionally, however, by replacifig
with 2 -
Let’s now look at the method, where a worker picks off and executedean from the queue. We want the

worker to block while there’s nothing to do; in ettwords, when there are no items on the queuecéj@ur blocking
condition isQ K ($:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 69

The loop exits wherQ K (is nonzero, meaning that (at least) one item istanoding. We must
dequeue the iterneforereleasing the lock—otherwise, the item may nothieee for us to dequeue (the presence of
other threads means things can change while yald'hliin particular, another consumer just finighen previous job
could sneak in and dequeue our item if we didnltllemto the lock, and did something like this irste

Q! =@5.6

Q K/M , 0 6

After the item is dequeued, we release the lockeuatiately. If we held on to it while performing thesk, we would
unnecessarily block other consumers and produdéesdon’t pulse after dequeuing, as no other consgareever
unblock by there being fewer items on the queue.

Locking briefly is advantageous when using and? (and in general) as it avoids unnecessarily
blocking other threads. Locking across many linfesode is fine—providing they all execute quickly.
Remember that you're helped by 's releasing the underlying lock while awaitingge!

Wait Timeouts

You can specify a timeout when calling , either in milliseconds or as a: . The method then returns
if it gave up because of a timeout. The timeoytiap only to thevaiting phaseHence, a with a timeout
does the following:

1. Releases the underlying lock
2. Blocks until pulsedor the timeout elapses
3. Reacquires the underlying lock

Specifying a timeout is like asking the CLR to gixau a “virtual pulse” after the timeout intervAl timed-out
will still perform step 3 and reacquire the lock-sfjas if pulsed.

Should block in step 3 (while reacquiring the lock), dimgeout is ignored. This is rarely an issue,
though, because other threads will lock only byiafla well-designed /? application. So, reacquiring|
the lock should be a near-instant operation.

timeouts have a useful application. Sometimesay fve unreasonable or impossibleeto whenever an
unblocking condition arises. An example might ba Hlocking condition involves calling a methodttbarives
information from periodically querying a databalédatency is not an issue, the solution is simpled-can specify a
timeout when calling , as follows:

1Q !
" HS
Q!#

This forces the blocking condition to be recheciethe interval specified by the timeout, as welixdoen pulsed. The
simpler the blocking condition, the smaller thedomt can be without creating inefficiency. In tbése, we don’t care
whether the was pulsed or timed out, so we ignore its retaie.

The same system works equally well if the pulsahisent due to a bug in the program. It can be vaatthing a timeout
to all commands in programs where synchronization isquéarly complex, as an ultimate backup for obscure
pulsing errors. It also provides a degree of buguimity if the program is modified later by somemme on the? !

returns & value indicating whether it got a “real” pulsethfs returns , it means that
it timed out: sometimes it can be useful to log i throw an exception if the timeout was unexpect

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 70

Two-Way Signaling and Races

An important feature of ~ ? is that it executes asynchronously, meaning trddésn't itself block or pause
in any way. If another thread is waiting on thesed object, it's unblocked. Otherwise the pulserfmsffect and is
silently ignored.

Hence? provides one-way communication: a pulsing thrgaudgntially) signals a waiting thread. There is no
intrinsic acknowledgment mechanistm: does not return a value indicating whether oritsgbulse was received.
Further, when a notifier pulses and releases it lithere’s no guarantee that an eligible waitédr ki¢k into life
immediately There can be a small delay, at the discretiah@thread scheduler, during which time neitheedldrhas a
lock. This means that the pulser cannot know ivben a waiter resumes—unless you code somethiraifispdly (for
instance with another flag and another reciprocal, and?).

Relying on timely action from a waiter with no cust acknowledgement mechanism counts as “messiry” Wi
and? . You'll lose!

To illustrate, let's say we want to signal a thréad times in a row:

08 Q! 08
0Q
$ %3 "
Q!
Q
?7-Q! +
+
$ %3 "
Q!
6Q Q!
Q "
(7) 4
+
+
+
* @ :L
4
4
4
4
4
- @:L
4

This program is flawed and demonstrateéace conditionthe" loop in the main thread can freewheel right thtoug
its five iterations anytime the worker doesn’t htié lock, and possibly before the worker evensitdihe
producer/consumer example didn’t suffer from thiskpem because if the main thread got ahead ofvtitker, each
request would queue up. But in this case, we neednain thread to block at each iteration if thekeo's still busy
with a previous task.

We can solve this by addinga flag to the class, controlled by the worker. Treimthread then waits until the
worker’s ready before setting tlie flag.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 71

This is analogous to a previous example that perédrthe same thing using two= | S, except
more extensible.

Here it is:
08 Q! 08
0 ! #Q
$ %3 "
1Q !
5 | + 18
Q
Q
2 -Q!
+
+
$ %3 "
1Q !
! $
21 % =0
6Q Q!
" M |
(7)) 4
+
+
+
@ :L
4
In the method, we clear th@ flag, set th&) flag, and pulse, all in the samé statement. The benefit of
doing this is that it offers robustness if we ldatgroduce a third thread into the equation. Imaginother thread trying
to signal the worker at the same time. Our logwadertight in this scenario; in effect, we're cieg Q and

settingQ , atomically.

Simulating Wait Handles
You might have noticed a pattern in the previousneple: both waiting loops have the following struet
Q!

6Q" Q!
Q"

+

whereQ" is set to in another thread. This is, in effect, mimicking-a= | . If we omitted
"o , we'd then have the basis ofa = |

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 72

Let’s flesh out the complete code fora= | using and?

08 Q! 08
0Q

@
1Q !

1Q! Q ? - Q! +

= rQraq " +

We used? - because there could be any number of blocked rsaite

Writing an- = | is simply a matter of replacing the code ir@ with this:
1Q !

and replacing - with ? in the method:
Q! Q Q! +

Use of? - would forgo fairness in the queuing of backloggesters, because each callto -
would result in the queue breaking and then re-flogm

ReplacingQ with an integer field would form the basis of a

Simulating the static methods that work acrosg afserait handles is easy in simple scenarios. ddugivalent of
calling - is nothing more than a blocking condition thatimorates all the flags used in place of the wait
handles:

1Q !
6Q" &006Q" BOO6Q" C
Q!

This can be particularly useful given that is often unusable due to COM legacy issues. Siimgla - is
simply a matter of replacing tii@Coperator with théPoperator.

If you have dozens of flags, this approach becdassefficient because they must all share a single
synchronizing object in order for the signalingatork atomically. This is where wait handles have an
advantage.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 73

Waiting queues and PulseAll

When more than one thread s upon the same object, a “waiting queue” formsrzkthe synchronizing
object (this is distinct from the “ready queue” diser granting access to a lock). Each then releases a
single thread at the head of the waiting-queud, can enter the ready-queue and re-acquire the Tdadnk of
it like an automatic car park: you queue firsthat pay station to validate your ticket (the waitqugeue); you
gueue again at the barrier gate to be let outréhdy queue).

I Monitor.Exit
Ready Queue]—— Lock >

Monitor.Enter

(when

scheduled Wait
by CPU)

Pulse »
-—— <l Waiting Queue

The order inherent in the queue structure, howes@ften unimportantin ~ /? applications, and in

these cases it can be easier to imagine a “pookadting threads. Each pulse, then, releases oittnwéhread
from the pool.

? - releases the entire queue, or pool, of waitingatis. The pulsed threads won't all start executing
exactly at the same time, however, but rather iorderly sequence, as each of their statements tries to
re-acquire the same lock. In effeet, - moves threads from the waiting-queue to the repue, so

they can resume in an orderly fashion.

Writing a CountdownEvent

With and? , we can implement the essential functionality @auntdownEvent as follows:

:0 (

08 Q! 08

Q

0 (+

0 ((Q (+

0 -(1& +

0 - (

1Q !

Q

Q %$?-Q!

The pattern is like what we’ve seen previously,egtdhat our blocking condition is based on angaetdield.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

74

Thread Rendezvous

We can use the class that we just wrote to rendezvous a pain@fads—as we did earlier with
WaitHandle.SignalAndWait:
= A
08 Q! 08
. IS$H 0 1(1
(Q (B
:0
5* &$$5$
: 5% &%
Q
Q
() 6)
+
08
Q
Q

() 6)
+
+

In this example, each thread sleeps a random anabtinte, and then waits for the other thread, ltégyin them both
writing “Mate” at (almost) the same time. This &led athread execution barrieand can be extended to any number
of threads (by adjusting the initial countdown \&glu

Thread execution barriers are useful when you wakéeep several threads in step as they procemses ®f tasks.
However, our current solution is limited in that wen’t re-use the sange object to rendezvous threads a
second time—at least not without additional sign@konstructs. To address this, Framework 4.0 desva new class
called Barrier.

The Barrier Class

TheF class is a signaling construct new to Framewaddk Wimplements éhread execution barriemwhich
allows many threads to rendezvous at a point ie.tifhe class is very fast and efficient, and ist lugion ,? ,
and spinlocks.

To use this class:
1. Instantiate it, specifying how many threads shqadake in the rendezvous (you can change thisbgtealling

- 7 : /: f) .)
2. Have each thread call - when it wants to rendezvous.
InstantiatingF with a value ofccauses - to block until that method has been called thimes.
But unlike a(I , it then automatically starts over: calling - again blocks until called

another three times. This allows you to keep sétlereads “in step” with each other as they proeessries of tasks.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 75

SignalAndWait

Thread 1 }---5’9-"-’5‘?‘3’ -------- pDlocked Thread 1 |

GalnC Thread 2 |

[Thieads |.ested,, Flocked Thread 3 |

SignalAndWait Barrier

- |
time

In the following example, each of three threadgegrthe numbers 0 through 4, while keeping in stigip the other
threads:

F QO 57 6%
ol
ol
ol

+

o
$ %3 "

()

& 2+ $

@J?IL $$$&&&BBBCCCSSS

A really useful feature df is that you can also specifypast-phase actiowhen constructing it. This is a
delegate that runs after - has been calledtimes, bubeforethe threads are unblocked. In our example,
if we instantiate our barrier as follows:

F Qo F C# & 1 +/

then the output is:

$$%

&&&
BBB
cccC
SSS

A post-phase action can be useful for coalescing filam each of the worker threads. It doesn’t hiaweorry about
preemption, because all workers are blocked whillees its thing.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 76

Reader/Writer Locks

Quite often, instances of a type are thread-safedncurrent read operations, but not for concurogaates (nor for a
concurrent read and update). This can also bentitheresources such as a file. Although proteciivggances of such
types with a simple exclusive lock for all modesaotess usually does the trick, it can unreasorabtyict concurrency
if there are many readers and just occasional epdain example of where this could occur is in sifiess application
server, where commonly used data is cached fordasg¢val in static fields. The 7! class is
designed to provide maximum-availability lockingjirst this scenario.

= 7! was introduced in Framework 3.5 and is a replaceifioe the older “fat”
= 7! class. The latter is similar in functionality, buts several times slower and has an
inherent design fault in its mechanism for handloack upgrades.

When compared to an ordinary (I =), = 7! is twice as slow.

With both classes, there are two basic kinds déH4ea read lock and a write lock:
A write lock is universally exclusive.
A read lock is compatible with other read locks.

So, a thread holding a write lock blocks all ottieeads trying to obtain a read write lock (and vice versa). But if no
thread holds a write lock, any number of threadg cmancurrently obtain a read lock.

= 7! defines the following methods for obtaining ankkasing read/write locks:
0 1 =7!
0 =7
0 1 7!
0 7!
Additionally, there are “Try” versions of dll methods that accept timeout arguments in the sfyle
I (timeouts can occur quite easily if the resousclegavily contended}. 7!
provides similar methods, namet and= . These throw an: I* if a timeout

occurs, rather than returnifig

The following program demonstrates 7! . Three threads continually enumerate a list, wiwie
further threads append a random number to thewisty second. A read lock protects the list readaTd a write lock
protects the list writers:

/
+ / 155 + /%

7%>Q 7 %>
:Q =

154 | $

I5#% /| $

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 77

08 J

50 .=5 &3
I5# + | $
Q - 50
I5#% + | $
(7)))" 50
D &$%
+
+
=5 1Q Q 5% * +
+
In production code, you'd typically add /" blocks to ensure that locks were released if @egtion
was thrown.

Here's the result:

F V&
- WC
F 33
- CC
= 7! allows more concurrerst activity than a simple lock. We can illustratestbiy inserting
the following line in the method, at the start of the loop:
(7Q(C=(")
This nearly always prints “3 concurrent readerb&{ methods spend most of their time inside'the loops).
Aswellas(= (= 7! provides the following properties for monitorirgcks:
00 ,=7kK +
00 ,) 0=7K +
00, 7k +
:0 = (+
:0 J +
:0 (+
0 = = +
0 = X (+
.O = (+

Upgradeable Locks and Recursion

Sometimes it's useful to swap a read lock for dendck in a single atomic operation. For instarstgpose you want
to add an item to a list only if the item wasnitealdy present. Ideally, you’'d want to minimize timee spent holding
the (exclusive) write lock, so you might proceedalows:

1. Obtain aread lock.

2. Testif the item is already present in the listl #rso, release the lock and

3. Release the read lock.

4. Obtain a write lock.

5. Add the item.

The problem is that another thread could sneakdhraodify the list (e.g., adding the same itemaen steps 3 and 4.
= 7! addresses this through a third kind of lock calledpgradeable lockAn upgradeable lock is

like a read lock except that it can later be praddbd a write lock in an atomic operation. Heredsvhyou use it:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 78

Calll 2 0= 7! .

Perform read-based activities (e.g., test whetheitem is already present in the list).
Calll 7! (this converts the upgradeable lock to a writ&k)oc

Perform write-based activities (e.g., add the iterthe list).

Calll* 7! (this converts the write lock back to an upgradesdck).
Perform any other read-based activities.

Call*J: 0= 7!

No gk wbdhR

From the caller’s perspective, it's rather like teelsor recursive locking. Functionally, thoughstep 3,
= 7! releases your read lock and obtains a fresh Vadde atomically.

There’s another important difference between upgmbte locks and read locks. While an upgradeabledan coexist
with any number ofeadlocks, only one upgradeable lock can itself betaut at a time. This prevents conversion
deadlocks berializingcompeting conversions—just as update locks dd)h Server:

SQL Server ReaderWriterLockSlim
Share lock Read lock

Exclusive lock Write lock

Update lock Upgradeable lock

We can demonstrate an upgradeable lock by chariging method in the preceding example such that it adds
number to list only if not already present:

50 .=5 &%
I5# < & | $
"6Q (50

I5# + [$

Q - 50

I5#%6 + /| $

(7)))) 50
+

I5#% <, & /| $

D &$$
+
= 7! can also do lock conversions—but unreliably beeaudoesn’t support the concept of
upgradeable locks. This is why the designers of 7 ! had to start afresh with a new clasg.

Lock recursion

Ordinarily, nested or recursive locking is prohglitwith= 7! . Hence, the following throws an
exception;
= 71
| =71
| =71
=71
=71
It runs without error, however, if you construct 7! as follows:
= 71! / »

This ensures that recursive locking can happenibgtyu plan for it. Recursive locking can createdasired
complexity because it's possible to acquire moanthne kind of lock:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 79

7!
I =71
7

=Tk
(7 , 7%
=71
o7

The basic rule is that once you've acquired a Iscksequent recursive locks can be less, but eatayr, on the
following scale:

Read Lock Upgradeable Lock Write Lock

A request to promote an upgradeable lock to a Writk, however, is always legal.

Suspend and Resume

A thread can be explicitly suspended and resumethe deprecated methods and =
This mechanism is completely separate to thatatkihg. Both systems are independent and operateradlel.

A thread can suspend itself or another threadir@all: results in the thread briefly entering the

=M state, then upon reaching a point safe for garbafiection, it enters the: state. From
there, it can be resumed only via another threatidlls its= method = will work only on a suspended
thread, not a blocked thread.

From .NET 2.0, : and= have been deprecated, their use discouraged leeohtise danger inherent in
arbitrarily suspending another thread. If a threaldling a lock on a critical resource is suspentteelwhole application
(or computer) can deadlock. This is far more damg®than calling Abort—which results in any suctk®being

released (at least theoretically) by virtue of codée blocks.
Itis, however, safe to call: on the current thread—and in doing so you canémeint a simple synchronization
mechanism—ith a worker thread in a loop, perfornartgsk, calling : on itself, then waiting to be resumed

(“woken up”) by the main thread when another tasteady. The difficulty, though, is in determiniwpether the
worker is suspended. Consider the following code:

I5% 1) 7)

This is horribly thread-unsafe: the code could tEempted at any point in these five lines, durirgclv the worker
could march on in and change its state. Whileritloa worked around, the solution is more complex ttine
alternative—using a synchronization construct sagln AutoResetEvent or Wait and Pulse. This makes and
= useless on all counts.

The deprecated: and= methods have two modes: dangerous and useless!

Aborting Threads

You can end a thread forcibly via the method:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 80

: 855 7
-0 0
+
+
The thread upon being aborted immediately entersith= M state. If it then terminates as expected, it goes
into the :: state. The caller can wait for this to happendiliirg 9
-0
+
(7 J
: 855
« 7 =
-0
(7 -0 =M
9
(7
+
+
Abort causesa -0 I* : to be thrown on the target thread, in most cagls where the thread’s

executing at the time. The thread being aborteccbanse to handle the exception, but the excettiem gets
automatically re-thrown at the end of the block (to help ensure the thread, indeed, endxjpscted). It is,
however, possible to prevent the automatic re-thbgwalling = -0 within the catch block. Then
thread then re-enters the state (from which it can potentially be abortediay In the following example, the
worker thread comes back from the dead each timé an is attempted:

D &3 0
D &3 0
D &$$$ 0
+
!
+
0 I =0 +
(70) 6)
+
+
+
-0 I*: is treated specially by the runtime, in that iedio't cause the whole application to terminate if

unhandled, unlike all other types of exception.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 81

-0 will work on a thread in almost any state — rugniblocked, suspended, or stopped. However if peswded

thread is aborted, a I* : is thrown—this time on the calling thread—and &hertion doesn't kick
off until the thread is subsequently resumed. Hehew to abort a suspended thread:
0 +
I* : = +
5 0

Complications with Thread.Abort

Assuming an aborted thread doesn't gall-0 , you might expect it to terminate fairly quickBut as it happens,
with a good lawyer the thread may remain on deathfor quite some time! Here are a few factors thay keep it
lingering inthe0 =M state:

Static class constructors are never aborted parttwaugh (so as not to potentially poison the €lias the
remaining life of the application domain)

All catch/finally blocks are honored, and never rad mid-stream

If the thread is executing unmanaged code whent@dhoexecution continues until the next managee cod
statement is reached

The last factor can be particularly troublesomehat the .NET framework itself often calls unmaségode,
sometimes remaining there for long periods of tifie example might be when using a networking oadase class. If
the network resource or database server diesstowsto respond, it's possible that execution caelthain entirely
within unmanaged code, for perhaps minutes, depgrati the implementation of the class. In theses;ame certainly
wouldn't want to Join the aborted thread—at leastwvithout a timeout!

Aborting pure .NET code is less problematic, aglas /" blocks or using statements are incorporated to
ensure proper cleanup takes place should & I* : be thrown. However, even then one can still be
vulnerable to nasty surprises. For example, consigefollowing:

(o))

Y0 1"4)
C#'s statement is simply a syntactic shortcut, whicthia case expands to the following:
o))
0 1") +
/ +
It's possible for an0 to fire after the is created, but before the try block begins. bt,fay digging
into the IL, one can see that it's also possibtdtfto fire in between the being created and assigned to

TOSEL)" %)
TQSSHVL G OH @

G OH @; Ly *
JQPBH0L $

Either way, the call to the: method in the finally block is circumvented, résg in an abandoned open file
handle, preventing any subsequent attempts toecréat* until the application domain ends.

In reality, the situation in this example is wostill, because arD would most likely take place within the
implementation of (* . This is referred to as opaque code—that whichl@rgt have the source.
Fortunately, .NET code is never truly opaque: we &gain wheel in ILDASM— or better still, Lutz Rosts
Reflector—and see that (* calls 's constructor, which has the following logic:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 82

& (; :#
, &#
+
Nowhere in this constructor is there a / block, meaning that if the fires anywhere within the (non-
trivial) , method, the newly created stream will be abandowétd no way of closing the underlying file handle

This raises the question on how to go about wriéingbort-friendly method. The most common workatbis not to
abort another thread at all—but to implement a eoafive cancellation pattern, as described prelyous

Ending Application Domains

Another way to implement an abort-friendly workeiby having its thread run in its own applicatiamdin. After
calling-0 , you tear down the application domain, therebgasing any resources that were improperly disposed.

Strictly speaking, the first step—aborting the #ue-is unnecessary, because when an applicationiddsnanloaded,
all threads executing code in that domain are aatiadly aborted. However, the disadvantage ofinglyn this
behavior is that if the aborted threads don't axa timely fashion (perhaps due to code in finaligcks, or for other
reasons discussed previously) the application domvdi not unload, and& J -/ I*: will
be thrown on the caller. For this reason, it'sdyetb explicitly abort the worker thread, then &ll with some
timeout (over which you have control) before uniogdhe application domain.

In the following example, the worker enters anriité loop, creating and closing a file using ther&lunsafe

N method. The main thread then repeatedly start@bads workers. It usually fails within one or two
iterations, with(* getting aborted part way through its internal iempéntation, leaving behind an abandoned
open file handle:

@
)
!
PN
-0
(7)0)
+
+
!
o) *) o+
+
+
-0
-0
@ : L : "2 " *20
0 0 :

Here's the same program modified so the workeathrans in its own application domain, which isaaded after the
thread is aborted. It runs perpetually without erb@cause unloading the application domain retetimeabandoned file
handle:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 83

&$$
-0
"69 B$$$
2 1 2 ! #
;
7 R R
+
SN 6

-0
-0
-0
-0

Creating and destroying an application domainletirely time-consuming in the world of threadingfigities (taking a
few milliseconds) so it's something conducive téingedone irregularly rather than in a loop! Alslee tseparation
introduced by the application domain introducestlh@oelement that can be either of benefit or detnt, depending on
what the multi-threaded program is setting outdisieve. In a unit-testing context, for instanceyning threads on
separate application domains is of benefit.

Ending Processes

Another way in which a thread can end is when doremt process terminates. One example of this ewahworker
thread’s, F ! property is set to true, and the main thread lieéswhile the worker is still running. The
background thread is unable to keep the applicatioe, and so the process terminates, taking élekdround thread
with it.

When a thread terminates because of its parenepspit stops dead, and no finally blocks are erelcu

The same situation arises when a user terminataarasponsive application via the Windows Task M@naor a
process is killed programmatically via

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 84

Part 5: Parallel Programming

Parallel Programming

In this section, we cover the multithreading APéswito Framework 4.0 for leveraging multicore preoes:

Parallel LINQ or PLINQ
The? class

The task parallelism constructs
Theconcurrentcollections
e and :

These APIs are collectively known (loosely) as RPA4rallel Framework). The class together with the task
parallelism constructs is called tiask Parallel Libraryor TPL.

Framework 4.0 also adds a number of lower-levaatimg constructs that are aimed equally at tiauiti
multithreading. We covered these previously:

The low-latency signaling constructs (, = 2 (I and
F)

Cancellation tokens for cooperative cancellation
The lazy initialization classes
7 %>

You'll need to be comfortable with the fundamental®arts 1-4 before continuing—particularly loakiand thread
safety.

Why PFX?

In recent times, CPU clock speeds have stagnattdhanufacturers have shifted their focus to inérepsore counts.
This is problematic for us as programmers becausstandard single-threaded code will not autoralijicun faster as
a result of those extra cores.

Leveraging multiple cores is easy for most serygliaations, where each thread can independentiylraa separate
client request, but is harder on the desktop—becaugpically requires that you take your compiataally intensive
code and do the following:

1. Partition it into small chunks.
2. Execute those chunks in parallel via multithreading
3. Collatethe results as they become available, in a thseé&land performant manner.

Although you can do all of this with the classicltitbreading constructs, it's awkward—particulathe steps of
partitioning and collating. A further problem isatithe usual strategy of locking for thread saéetyses a lot of
contention when many threads work on the sameatatace.

The PFX libraries have been designed specificallyelp in these scenarios.

Programming to leverage multicores or multiple @ssors is callegdarallel programmingThis is a subset of
the broader concept of multithreading.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 85

PFX Concepts

There are two strategies for partitioning work agémreadsdata parallelismandtask parallelism

When a set of tasks must be performed on manywddtias, we can parallelize by having each threafbpe the
(same) set of tasks on a subset of values. Thallsddata parallelismbecause we are partitioning tthata between
threads. In contrast, witilask parallelismwe partition theasks in other words, we have each thread perform fereifit
task.

In general, data parallelism is easier and sca#eibto highly parallel hardware, because it redumr eliminates shared
data (thereby reducing contention and thread-s#gsties). Also, data parallelism leverages thetfattthere are often
more data values than discrete tasks, increasegdtallelism potential.

Data parallelism is also conducivestouctured parallelismwhich means that parallel work units start amdsfi in the
same place in your program. In contrast, task fsisth tends to be unstructured, meaning that [gnabrk units may
start and finish in places scattered across yaugram. Structured parallelism is simpler and lessrgprone and allows
you to farm the difficult job of partitioning antdread coordination (and even result collation)touibraries.

PFX Components

PFX comprises two layers of functionality. The heghayer consists of twstructured data parallelisPIs: PLINQ
and the? class. The lower layer contains the task paralielilasses—plus a set of additional constructeljp h
with parallel programming activities.

...................................

E i Structured Data Parallelism
)
= :
S Parallel Class : PLINQ
P 5 e
¢ :
|3 :
' :
s :
P x : o Slim Lazy
I '
b Task Parallelism : Concur‘rent Spmmg Signaling Initialization
: i | Collections Primitives
' ; Constructs Types
CLR Thread Pool
Threads

PLINQ offers the richest functionality: it automatall the steps of parallelization—including péetiing the work into
tasks, executing those tasks on threads, andioglidite results into a single output sequencecHllfeddeclarative—
because you simply declare that you want to pdizalgour work (which you structure as a LINQ guemnd let the
Framework take care of the implementation dethilsontrast, the other approachesiarperative in that you need to
explicitly write code to partition or collate. Ihe case of the class, you must collate results yourself; with the
task parallelism constructs, you must partitionwhek yourself, too:

Partitions work Collates results
PLINQ Yes Yes
The? class Yes No
PFX'stask parallelism No No

The concurrent collections and spinning primitibe$p you with lower-level parallel programming &dies. These are
important because PFX has been designed to worintptwith today’s hardware, but also with futurengrations of
processors with far more cores. If you want to mayele of chopped wood and you have 32 workedotthe job, the

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 86

biggest challenge is moving the wood without thek&os getting in each other's way. It's the samté dividing an
algorithm among 32 cores: if ordinary locks aredueprotect common resources, the resultant bhgckiay mean that
only a fraction of those cores are ever actuallgybat once. The concurrent collections are tunedifipally for highly
concurrent access, with the focus on minimizinglominating blocking. PLINQ and the class themselves
rely on the concurrent collections and on spinmirigitives for efficient management of work.

PFX and Traditional Multithreading

A traditional multithreading scenario is one whameltithreading can be of benefit even on a singleec
machine—with no truparallelizationtaking place. We covered these previously: thejuite such tasks as
maintaining a responsive user interface and dowdihggtwo web pages at once.

Some of the constructs that we’ll cover in the pararogramming sections are also sometimes useful
traditional multithreading. In particular:

PLINQ and the? class are useful whenever you want to executeatipas in parallel and then
wait for them to completes{ructuredparallelism). This includes non-CPU-intensive taskch as calling a
web service.

The task parallelism constructs are useful whenwant to run some operation on a pooled thread, and
also to manage a task’s workflow through contirarsiand parent/child tasks.

The concurrent collections are sometimes apprapvidien you want a thread-safe queue, stack, or
dictionary.

F I provides an easy means to implement producer/oomsstructures.

When to Use PFX

The primary use case for PFXgarallel programmingleveraging multicore processors to speed up ceatipually
intensive code.

A challenge in leveraging multicores is Amdahl\w,lavhich states that the maximum performance imgnoent from
parallelization is governed by the portion of tloele that must execute sequentially. For instaficsly two-thirds of
an algorithm’s execution time is parallelizableuyean never exceed a threefold performance gainfa-eith an
infinite number of cores.

So, before proceeding, it's worth verifying thag tottleneck is in parallelizable code. It's alsortir considering
whether your codaeedso be computationally intensive—optimization iseof the easiest and most effective approach.
There’s a trade-off, though, in that some optim@atechniques can make it harder to paralleliziéeco

The easiest gains come with what's cabeebarrassingly parallgbroblems—where a job can be divided easily into
tasks that execute efficiently on their own (stowetl parallelism is very well suited to such promdg. Examples
include many image processing tasks, ray tracind,taute force approaches in mathematics or cryppity. An
example of a nonembarrassingly parallel problermgementing an optimized version of the quicksdgorithm—a
good result takes some thought and may requireuctsted parallelism.

PLINQ

PLINQ automatically parallelizes local LINQ queri€d INQ has the advantage of being easy to udeainitt offloads
the burden of both work partitioning and resuliatibn to the Framework.

To use PLINQ, simply cal? on the input sequence and then continue the LINEygas usual. The
following query calculates the prime numbers betw@eand 100,000—making full use of all cores ontthrget
machine:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 87

J 0% >0 | 0= CHESS $$$1C
K
0 2
| 0= B# M- > U >$
GH: : K

-? is an extension methodin 7 M? | 0 . It wraps the input in a sequence based
on? K % > , which causes the LINQ query operators that ydassequently call to bind to an
alternate set of extension methods definedin | 0 . These provide parallel implementations of each of

the standard query operators. Essentially, thekwgpartitioning the input sequence into chunkas ttxecute on
different threads, collating the results back iatsingle output sequence for consumption:

ParallelEnumerable.Select

a|bl—A[B

Thread 1
|
B0 AU e e Ol g O ADEEEE
e[fFE|F
Thread 3

"abcdef".AsParallel().Select (c => char.ToUpper(c)).ToArray()

Calling- M unwraps & K sequence so that subsequent query operatorsdihd standard
query operators and execute sequentially. Thistessary before calling methods that have sidetefte are not
thread-safe.

For query operators that accept two input sequefices,. :9 ' (,J ,, 1 , and
Y :), you must apply ? to both input sequences (otherwise, an excepsithrown). You don'’t, however,
need to keep applying? to a query as it progresses, because PLINQ’s quegyators output another
? K sequence. In fact, calling? again introduces inefficiency in that it forcesrgiag and
repartitioning of the query:
M -? M ? K % >
>>8%% @ ?2 K % >
2 (<
> R

Not all query operators can be effectively paratsd. For those that cannot, PLINQ implements therator
sequentially instead. PLINQ may also operate seplgnif it suspects that the overhead of paratktion will actually
slow a particular query.

PLINQ is only for local collections: it doesn’t wiowith LINQ to SQL or Entity Framework because lim$e cases the
LINQ translates into SQL which then executes omatallase server. However, yoanuse PLINQ to perform additional
local querying on the result sets obtained fronaldase queries.

If a PLINQ query throws an exception, it's rethroasan I* : whose, I* :
property contains the real exception (or excepjiddse Working with AggregateException for details.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 88

Why Isn’t .AsParallel() the Default?

Given that- ? transparently parallelizes LINQ queries, the goesarises, “Why didn’t Microsoft
simply parallelize the standard query operatorsraakle PLINQ the default?”

There are a number of reasons fordpéin approach. First, for PLINQ to be useful there foelse a
reasonable amount of computationally intensive workt to farm out to worker threads. Most LINQ to
Objects queries execute very quickly, and not evdyld parallelization be unnecessary, but the cxadrof
partitioning, collating, and coordinating the extneeads may actually slow things down.

Additionally:
The output of a PLINQ query (by default) may diffesm a LINQ query with respect to element ordering

PLINQ wraps exceptionsinan |* : (to handle the possibility of multiple exceptions
being thrown).

PLINQ will give unreliable results if the query iokes thread-unsafe methods.

Finally, PLINQ offers quite a few hooks for tuniagd tweaking. Burdening the standard LINQ to Olgjed®I
with such nuances would add distraction.

Parallel Execution Ballistics

Like ordinary LINQ queries, PLINQ queries are Igavaluated. This means that execution is triggerdg when you
begin consuming the results—typically via a loop (although it may also be via a conversionrafme such as
- or an operator that returns a single element lureya

As you enumerate the results, though, executioogaas somewhat differently from that of an ordiregguential
query. A sequential query is powered entirely lyy¢bnsumer in a “pull” fashion: each element fréwa input sequence
is fetched exactly when required by the consumegrarallel query ordinarily uses independent thraadstch elements
from the input sequence slightiheadof when they’re needed by the consumer (ratherdikeleprompter for
newsreaders, or an antiskip buffer in CD playdtghen processes the elements in parallel thrabglguery chain,
holding the results in a small buffer so that theyeady for the consumer on demand. If the conspangses or breaks
out of the enumeration early, the query procestsor @auses or stops so as not to waste CPU timeorory.

You can tweak PLINQ's buffering behavior by calling @: after- ? . The default
value of- F " generally gives the best overall resuts- " disables the buffer and is usefuy
if you want to see results as soon as possjbl&;" caches the entire result set before presenting
to the consumer (th@ F and= operators naturally work this way, as do the eleeggregation,
and conversion operators).

= —

PLINQ and Ordering

A side effect of parallelizing the query operatisrthat when the results are collated, it's notessarily in the same
order that they were submitted, as illustratechepirevious diagram. In other words, LINQ’s normaler-preservation
guarantee for sequences no longer holds.

If you need order preservation, you can force italing- @ after- ?
(-? -@
Calling- @ incurs a performance hit with large numbers ofrelets because PLINQ must keep track of each

element’s original position.

You can negate the effect of later in a query by callingJ : this introduces a “random shuffle
point” which allows the query to execute more ééfitly from that point on. So if you wanted to me& input-
sequence ordering for just the first two query apans, you'd do this:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 89

%& " (
%& ")
2< : # T

-@ is not the default because for most queries, thggnal
input ordering doesn’t matter. In other words, @ was the
default, you'd have to applJd to the majority of your
parallel queries to get the best performance, whichld be
burdensome.

PLINQ Limitations

There are currently some practical limitations dratPLINQ can
parallelize. These limitations may loosen with @dgent service
packs and Framework versions.

The following query operators prevent a query fioemg
parallelized, unless the source elements are indhginal
indexing position:

[, 1o ,and!:
The indexed versions of , ,andl -

Most query operators change the indexing positioglaments
(including those that remove elements, such as). This means
that if you want to use the preceding operatoesy’thusually need
to be at the start of the query.

The following query operators are parallelizablat, ise an
expensive partitioning strategy that can sometibngeslower than
sequential processing:

9 ,. F ,. 9 i ,J .)
andl* :

The- operator'sseededverloads in their standard incarnations are acdlfelizable—PLINQ provides
special overloads to deal with this.

All other operators are parallelizable, although asthese operators doesn't guarantee that yenyauill be
parallelized. PLINQ may run your query sequentidlly suspects that the overhead of parallelizatioll slow down
that particular query. You can override this bebagind force parallelism by calling the followinfjea - ?

I* ? ;?

’

Example: Parallel Spellchecker

Suppose we want to write a spellchecker that rumnskty with very large documents by leveragingaathilable cores.
By formulating our algorithm into a LINQ query, wan very easily parallelize it.

The first step is to download a dictionary of Esglivords into & for efficient lookup:
e) TIiF) 0 &3BH$$S
o / ;
)L O : * Y) 71:%)
79 < % >
=-7) 7TL:M)#

(-

We'll then use our word lookup to create a testcldoent” comprising an array of a million random dsrAfter
building the array, we'll introduce a couple of Bipg mistakes:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 90

GH I 0= $H&$FEE
> 7 G b5*%# 7 7 H

G&BCS3H) A) :
GBCS3VH)0) ": !

Now we can perform our parallel spellcheck by tegti against 7 !: . PLINQ makes this very
easy:

(7 1 o1y L,

@J?JL
A1l * &CS3
0 1 * BCS3V
, * is a custom struct that we define as follows:
, 0 0 , K

The 7 !:(method in the predicate gives the query some “hegat makes it worth parallelizing.

We could simplify the query slightly by using aroagmous type instead of the* struct.
However, this would degrade performance becauseyamous types (being classes and therefore reference
types) incur the cost of heap-based allocationsadequent garbage collection.

The difference might not be enough to matter wéthuential queries, but with parallel queries, fawpistack-
based allocation can be quite advantageous. Thiscause stack-based allocation is highly paradible (as
each thread has its own stack), whereas all thneads compete for the same heap—managed by a single
memory manager and garbage collector.

Using ThreadLocal<T>

Let’s extend our example by parallelizing the daabf the random test-word list itself. We struetd this as a LINQ
query, so it should be easy. Here's the sequerdiaion:

GH I 0= $#&$35$
> 7 G >% $# 7 7 H
Unfortunately, the callto 5* is not thread-safe, so it's not as simple as tirgpr ? into the
query. A potential solution is to write a functithrat locks around 5 * ; however, this would limit
concurrency. The better option is to use7 %= > to create a separate object for each thread. We
can then parallelize the query as follows:
= 7 %= >
5 :>5 01
GH I 0= $H&$$$5$ 2
> 7 G 0 >% $# 7 7 H
In our factory function for instantiating-a object, we passin.a s hashcode to ensure that if two

objects are created within a short period of tithey’ll yield different random number sequences.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 91

When to Use PLINQ

It's tempting to search your existing applicatidosLINQ queries and experiment with parallelizithgm.
This is usually unproductive, because most problEmahich LINQ is obviously the best solution teted
execute very quickly and so don't benefit from plati@ation. A better approach is to find a CPUeinsive
bottleneck and then consider, “Can this be expteasea LINQ query?” (A welcome side effect of such
restructuring is that LINQ typically makes code fieraand more readable.)

PLINQ is well suited to embarrassingly parallellgeoms. It also works well for structured blockisgks, such
as calling several web services at once (see @dlliacking or 1/O-Intensive Functions).

PLINQ can be a poor choice for imaging, becauskatiog millions of pixels into an output sequenceates a
bottleneck. Instead, it's better to write pixelsedtly to an array or unmanaged memory block aredtius

? class or task parallelism to manage the multittirea (It is possible, however, to defeat result
collation using - . Doing so makes sense if the algorithm naturalhdk itself to LINQ.)

Functional Purity

Because PLINQ runs your query on parallel thregds,must be careful not to perform thread-unsafratmons. In
particular, writing to variables sde-effectingand therefore thread-unsafe:

M : 0 :
. "I 0 = $HEEE# M
$
M " I 0 = $HEEE -? R DD
We could make incrementingthread-safe by using locks or ! , but the problem would still remain that
won't necessarily correspond to the position ofitipait element. And adding@ to the query wouldn't fix the
latter problem, because@ ensures only that the elements are output in deraonsistent with them having

been processed sequentially—it doesn't actyaibcessthem sequentially.
Instead, this query should be rewritten to usdritlexed version of
M | 0 = $HEEE -? # >R

For best performance, any methods called from gopeyators should be thread-safe by virtue of niing to fields or
properties (non-side-effecting, fumctionally puré. If they're thread-safe by virtue of locking, thaery’s parallelism
potential will be limited—by the duration of theclodivided by the total time spent in that function

Calling Blocking or I/O-Intensive Functions

Sometimes a query is long-running not becaus€iPt-intensive, but becausenitits on something—such as a web
page to download or some hardware to respond. Pld&iQeffectively parallelize such queries, provigihat you hint
itbycallng / @"? after- ? . For instance, suppose we want to ping six website
simultaneously. Rather than using clumsy asynchusiielegates or manually spinning up six threadscam
accomplish this effortlessly with a PLINQ query:

GH

—
~
BiS

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 92

/I @"? forces PLINQ to run the specified number of tasiksultaneously. This is necessary
when calling blocking functions such as because PLINQ otherwise assumes that the qué&® isintensive
and allocates tasks accordingly. On a two-core magclhor instance, PLINQ may default to runningyotwo tasks at
once, which is clearly undesirable in this situatio

PLINQ typically serves each task with a threadjesctito allocation by the thread pool. You can taete the
initial ramping up of threads by calling ? .

To give another example, suppose we were writingraeillance system and wanted to repeatedly cosnibiages
from four security cameras into a single compasitage for display on a CCTV. We'll represent a ceangith the
following class:

:0 ()
0 (I I+
L
0 .5*;
: &BC !
y ")/

+

+
To obtain a composite image, we must cdl* ; on each of four camera objects. Assuming the dipereas

I/0-bound, we can quadruple our frame rate witlajpelization—even on a single-core machine. PLINGkas this
possible with minimal programming effort:

(GH 1 0= $#S (S 08
> (
GH
2 24 +) 4 C
> 5*: -
(7 9 wp /:
+
. 5%, is a blocking method, so we used @"? to get the desired concurrency. In our
example, the blocking happens when we call ; in real life it would block because fetching ameige from a camera

is 1/0O- rather than CPU-intensive.

Calling- @ ensures the images are displayed in a consistéat.Because there are only four
elements in the sequence, this would have a nbgigifect on performance.

Changing the degree of parallelism

Youcancal / @"? only once within a PLINQ query. If you need toléahgain, you must force
merging and repartitioning of the query by callirng again within the query:
) KIF 5%
-? ! @"? B
>6 ,
2 +) 4 6 ((8 "D
> Ju

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 93

Cancellation

Canceling a PLINQ query whose results you're coriegrin a" loop is easy: simply break out of the
and the query will be automatically canceled asetin@merator is implicitly disposed.

For a query that terminates with a conversion, elgnor aggregation operator, you can cancel infamother thread

via a cancellation token. To insert a token, call after calling- ? , passing in the!
property of & ! object. Another thread can then dall on the token source, which
throws an@: (I*: on the query’s consumer:
J 0% > I 0= CH&SS $5$$
51 $
50K
" -2 +1
| 0= B# M - > U >$
>
D &$$ (M
1 3 &$$
+
M L
GH: : 50K -
2 0
+
4, 1 #%,

PLINQ doesn'’t preemptively abort threads, becadigkeodanger of doing so. Instead, upon cancefatiovaits for
each worker thread to finish with its current eletgefore ending the query. This means that angreat methods that
the query calls will run to completion.

Optimizing PLINQ

Output-side optimization

One of PLINQ’s advantages is that it convenientifates the results from parallelized work intaregte output
sequence. Sometimes, though, all that you end ingddath that sequence is running some functioneamwer each

element:

/

If this is the case—and you don’t care about tlteepm which the elements are processed—you carowepefficiency
with PLINQ’s; - method.

The; - method runs a delegate over every output elenfempo K . It hooks right into PLINQ’s
internals, bypassing the steps of collating andverating the results.

Collating and enumerating results is not a masgiegbensive operation, so the optimization yields the
greatest gains when there are large numbers oklgégecuting input elements.

To give a trivial example:
)0 ")-? > g i (

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 94

ParallelEnumerable.Select

a | b |—>| A | B l—» Console.Write

Thread 1

| a | b | c | d | e | f } ‘AsParallel] >| c | d |—>| C | D |—> Console.Write

Thread 2

e | f |—>| E | F '—»Console.Write

Thread 3

"abcdef".AsParallel().Select (¢ => char.ToUpper(c)).ForAll (Console.Write)
Input-side optimization

PLINQ has three partitioning strategies for assigrninput elements to threads:

Strategy Element allocation Relative performance

Chunk partitioning Dynamic Average

Range partitioning Static Poor to excellent

Hash partitioning Static Poor

For query operators that require comparing elemgents 9,09 ' B) J , and

/), you have no choice: PLINQ always usesh partitioning Hash partitioning is relatively inefficient inagh
it must precalculate the hashcode of every elergsenthat elements with identical hashcodes carrdeepsed on the
same thread). If you find this too slow, your ooftion is to call M to disable parallelization.

For all other query operators, you have a choide aghether to use range or chunk partitioning.default:
If the input sequence indexable(if it's an array or implements % >), PLINQ choosesange partitioning
Otherwise, PLINQ choosehunk partitioning

In a nutshell, range partitioning is faster withdosequences for which every element takes a siant@unt of CPU
time to process. Otherwise, chunk partitioningseally faster.

To forcerange partitioning

If the query starts with 0 = , replace the latterwith | 0 =

Otherwise, simply call 7 or - on the input sequence (obviously, this incursréopmance cost in
itself which you should take into account).

? 1 0= is not simply a shortcut for calling 0 = e =7
It changes the performance of the query by actigatange partitioning.

To forcechunk partitioning wrap the input sequence in a calPto ((in
(() as follows:
GH 0 CHSH3#V#DHWHE +
N
1 & 3 -?
The second argument %o (indicates that you want toad-balancethe query, which is another way

of saying that you want chunk partitioning.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 95

la] o Jcfdfe]f

H_J
Range Y

Partitioning

AsParallel()

Chunk partitioning works by having each worker #t@eriodically grab small “chunks” of elementsnfrthe input
sequence to process. PLINQ starts by allocating serall chunks (one or two elements at a time), thereases the
chunk size as the query progresses: this ensuaesrtall sequences are effectively parallelizedlargk sequences
don’t cause excessive round-tripping. If a workapens to get “easy” elements (that process quidklyill end up
getting more chunks. This system keeps every thegadlly busy (and the cores “balanced”); the adwnside is that
fetching elements from the shared input sequergqgnes synchronization (typically an exclusive Ipeland this can
result in some overhead and contention.

Range partitioning bypasses the normal input-sidereration and preallocates an equal number ofezlesrio each
worker, avoiding contention on the input sequeBag.if some threads happen to get easy elementfirdsd early,
they sit idle while the remaining threads contimgrking. Our earlier prime number calculator migktform poorly
with range partitioning. An example of when rangetitioning would do well is in calculating the swhthe square
roots of the first 10 million integers:

?2 1 0= &#&$$BSHES > M
? 1 0= returns&® K %> , SO you don't need to subsequently eall

Range patrtitioning doesn’t necessarily allocatenelat ranges isontiguousblocks—it might instead choose
“striping” strategy. For instance, if there are tworkers, one worker might process odd-numbereahetets
while the other processes even-numbered elemeims.! T operator is almost certain to trigger a
striping strategy to avoid unnecessarily processiegients later in the sequence.

Parallelizing Custom Aggregations

PLINQ parallelizes the , - , , and * operators efficiently without additional intervemt. The
- operator, though, presents special challengeBL&XQ.

If you're unfamiliar with this operator, you carirthk of - as a generalized version of , - , , and
* —in other words, an operator that lets you plug tustom accumulation algorithm for implementingsural
aggregations. The following demonstrates how can do the work of

GH 0 B#CH#SH+
0 - S # > ' E

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 96

The first argument te is theseed from which accumulation starts. The second argurnsean expression to
update the accumulated value, given a fresh elenfentcan optionally supply a third argument tojpot the final
result value from the accumulated value.

Most problems for which has been designed can be solved as easily witha loop—and
with more familiar syntax. The advantage of is precisely that large or complex aggregatiomstza
parallelized declaratively with PLINQ.

Unseeded aggregations

You can omit the seed value when calling , in which case the first element becomesiti@icit seed, and
aggregation proceeds from the second element. s$idre’preceding examplenseeded

GH 0 &#B#C+
0 - # > Vv

This gives the same result as before, but we’'neadlgtdoing adifferent calculation Before, we were calculating
0+1+2+3; now we're calculating 1+2+3. We can beittestrate the difference by multiplying insteaflanlding:

GH 0 &#B#C+
* 0 - $#:# > R $R&RBRC B
0 - # > R &RBRC E

As we'll see shortly, unseeded aggregations haz@dvantage of being parallelizable without reqgitihe use of
special overloads. However, there is a trap witbeeded aggregations: the unseeded aggregationdseti®intended
for use with delegates that asemmutativeandassociativelf used otherwise, the result is eithwintuitive (with
ordinary queries) anondeterministi¢in the case that you parallelize the query withN®). For example, consider the
following function:

> 'R
This is neither commutative nor associative. (P@meple, 1+2*2 1= 2+1*1). Let's see what happens whe use it to
sum the square of the numbers 2, 3, and 4:

GH 0 B#CH#SH+
0 - # > R BD

Instead of calculating:
BRB'CRC'SRS BE
it calculates:
B'CRC'SRS BD
We can fix this in a number of ways. First, we cbiniclude O as the first element:
GH O B3 B#C#S+

Not only is this inelegant, but it will still givimcorrect results if parallelized—because PLINQelages the function’s
assumed associativity by selectimgltiple elements as seeds. To illustrate, if we denoteaggregation function as
follows:

> 'R
then LINQ to Objects would calculate this:
" SHBHCHS
whereas PLINQ may do this:
" SHB#' CHS
with the following result:

L $BRB S

LO C'SRS &E
; L 'OR0 CV3
@=INI5L 0'R C3

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 97

There are two good solutions. The first is to tilnis into a seeded aggregation—with zero as the. Sde only

complication is that with PLINQ, we’d need to usspecial overload in order for the query not tocexe sequentially

(as we'll see soon).

The second solution is to restructure the querh shiat the aggregation function is commutative assbciative:
0 >R - # > D

Of course, in such simple scenarios you can (andldhuse the operator instead of
0 > R

You can actually go quite far just with and- . For instance, you can use to calculate a
root-mean-square:

M 0 - > R

and even standard deviation:

Both are safe, efficient and fully parallelizable.

Parallelizing Aggregate

We just saw that fonnseede@ggregations, the supplied delegate must be ags@cand commutative. PLINQ will

give incorrect results if this rule is violated chese it drawsultiple seedfrom the input sequence in order to

aggregate several partitions of the sequence simediusly.

Explicitly seeded aggregations might seem likefa sption with PLINQ, but unfortunately these ormatiity execute

sequentially because of the reliance on a singld.sEo mitigate this, PLINQ provides another ovadof-

that lets you specify multiple seeds—or rathesead factory functiari-or each thread, it executes this function to

generate a separate seed, which becorttegad-localaccumulator into which it locally aggregates elatae

You must also supply a function to indicate hovedonbine the local and main accumulators. Finatiig -t

overload (somewhat gratuitously) expects a delegaperform any final transformation on the regutiu can achieve

this as easily by running some function on theltegurself afterward). So, here are the four dateg, in the order

they are passed:
8
Returns a new local accumulator
, 2 8
Aggregates an element into a local accumulator
& 2 8

Combines a local accumulator with the main accutoula

Applies any final transformation on the end result

reference type that you wish to mutate, becauseah® instance will then be shared by each thread.

In simple scenarios, you can specifyeged valuénstead of a seed factory. This tactic fails wtenseed is a

To give a very simple example, the following suims values in a 0 array:
0 -? -
> $# :
o> i To- :
> ' # 0 - :

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/

98

This example is contrived in that we could getsame answer just as efficiently using simpler apphes (such as an
unseeded aggregate, or better, the operator). To give a more realistic example, ssppse wanted to calculate the
frequency of each letter in the English alphabet given string. A simple sequential solution milgiak like this:

*T)
i M GBVH
*
* J: 122
*>$00 *% BV ;M G *H"

+

An example of when the input text might be verygasiin gene sequencing. The “alphabet” would then
consist of the letters, c, g, andt.

To parallelize this, we could replace the statement with a call to ;| (as we'll cover in the

following section), but this will leave us to dewith concurrency issues on the shared array. Ackitg around
accessing that array would all but kill the potahtor parallelization.

offers a tidy solution. The accumulator, in thise, is an arrayjust like the ;

array in
our preceding example. Here's a sequential venssimg-

GH
*

GBVH# ())

M# > -

* J: 122

*>3$00 *% BV ;M G *H"

M
+

And now the parallel version, using PLINQ’s speciaérload:

GH
* .9 -
> GBVH# (
M# > -
* J: 122
*>3$00 *%BVY ;M G *H"
M
+Hi
- 1>
ME M >
MY M#"&'B >"&'"B - #

(- So= 2

Notice that the local accumulation functioutateshe ; M array. This ability to perform this
optimization is important—and is legitimate because M is local to each thread.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. rights reserved. www.albahari.com/threading/ 99

The Parallel Class

PFX provides a basic form of structured parallelisenthree static methods in the class:

Executes an array of delegates in parallel
8

Performs the parallel equivalent of a C# loop
8 #
Performs the parallel equivalent of a C# loop

All three methods block until all work is completss with PLINQ, after an unhandled exception, rarraj workers
are stopped after their current iteration and teeption (or exceptions) are thrown back to théecatwrapped in an

I* :

Parallel.Invoke

? , ! executes an array of delegates in parallel, and then waits for themwaotmplete. The simplest
version of the method is defined as follows:

:0 -. - GH
Here’'s how we canuse ! to download two web pages at once:

? 0,

> 0o / ;)L M:).)#

> 0o / ;)L 8 N)8)
On the surface, this seems like a convenient stiofidc creating and waiting on two! objects (or asynchronous
delegates). But there’s an important differerce: , ! still works efficiently if you pass in an array af
million delegates. This is becausgdrtitionslarge numbers of elements into batches whichsigas to a handful of

underlying ! s—rather than creating a separate for each delegate.

As with all of? 's methods, you're on your own when it comes tdatmlg the results. This means you need to
keep thread safety in mind. The following, for arste, is thread-unsafe:
7% >
?)
> 2 o / yiL ") #
> 2 o / yiL o)

Locking around adding to the list would resolvesttdlthough locking would create a bottleneck ifi yad a much
larger array of quickly executing delegates. Adresblution is to use the thread-safe collectitias we cover in C# 4.0

in a Nutshell—¢ F would be ideal in this case (see “Concurrent Ctilbas”).
? ! is also overloaded to accepta @: object:
:0 -, ? @ ¢ #
: - GH
With? @: , you can insert a cancellation token, limit thexmaum concurrency, and specify a custom

task scheduler. A cancellation token is relevargmiou’re executing (roughly) more tasks than yauehcores: upon
cancellation, any unstarted delegates will be abaed. Any already-executing delegates will, howggentinue to
completion. See Cancellation for an example of lmwse cancellation tokens.

Parallel.For and Parallel.ForEach

? ; and? ;| perform the equivalent of a C# and" loop, but with each iteration
executing in parallel instead of sequentially. Here their (simplest) signatures:

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 100

:0 ? 7= 8 # % >
Il 0% > #- % >0

The following sequential loop:
$ %&$$ "

is parallelized like this:
8 $HE&SBH >
or more simply:
8 it &S$H ;
And the following sequential
< #)

is parallelized like this:

?)< # O,
To give a practical example, if we import the (: = namespace, we can generate six
public/private key-pair strings in parallel as folls:
1? GVH

2 M2 T #
>1? GH =-(Z

As with ? , ! , we can fee@® ; and? ; a large number of work items and
they’ll be efficiently partitioned onto a few tasks

The latter query could also be done with PLINQ:

GH! ?
? I 0 = $#V
>=-(Z

Outer versus inner loops

? ; and? ;| usually work best on outer rather than inner lodjhss is because with the
former, you're offering larger chunks of work torpbelize, diluting the management overhead. Pealiaihg both inner
and outer loops is usually unnecessary. In thevietig example, we’d typically need more than 10feedo benefit
from the inner parallelization:

? 0 BHESHH >

? ; $#3$#8>; #8 M 00
+ " .

Indexed Parallel.ForEach
Sometimes it's useful to know the loop iteratioder. With a sequential , it's easy:

B$
< #)
(7 : DD
Incrementing a shared variable, however, is n@zatirsafe in a parallel context. You must instea&dtiis following
version of; |

:0 ? 7= ;1% >
I 0% > #- % #? 7 3 >0

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 101

we'llignore? 7 : (which we’ll cover in the following section). Fapw, we’re interested in
third type parameter of type , which indicates the loop index:

S

? L)< # WMH #H >

(7
+

To put this into a practical context, we’'ll revisiite spellchecker that we wrote with PLINQ. Thddaing code loads
up a dictionary along with an array of a millionndse to test:

"6 IF) T71:¥) (0 &3B#33$
o I/ ;
)L O : * Yt) 7%

-7) TR
N

7' < % >
(:

GH 7 710 -
GH I 0= S$HESSESS
> 7 G 5*%# 7 7 H

G&BCS3H) A) :
GBCS3VH)0) ": !

We can perform the spellcheck on our array using the indexed versionof as follows:
(F%:% # >>
? o # # # >
"6 71
R (#

+

Notice that we had to collate the results intoradld-safe collection: having to do this is the digatage when
compared to using PLINQ. The advantage over PLI8IDat we avoid the cost of applying an indexed query
operator—which is less efficient than an indexed

ParallelLoopState: Breaking early out of loops

Because the loop body in a parallel or; | is a delegate, you can't exit the loop early veith ! statement.
Instead, youmustcall ! or : ona? 7: object:
:0 ? T
0 F!
:0 :
0 0 ,I*: +
0 0, = +
0 47 F +
00 K(+
+
Obtaininga? 7 : is easy: all versions of and; | are overloaded to accept loop bodies of type
- % #?2 T7: > . So, to parallelize this:
< #)
2#2
& $

(

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 102

do this:
?2 51)< # O 3, >

" 2#2
, 7 $

@J?JL<

You can see from the output that loop bodies mampdete in a random order. Aside from this differencallingrF !
yieldsat leastthe same elements as executing the loop sequentias example will always outputt leastthe letters
H, e I, 1, ando in some order. In contrast, calling instead of ! forces all threads to finish right after their
current iteration. In our example, calling could give us a subset of the lettels, |, I, ando if another thread was
lagging behind. Calling : is useful when you've found something that youdeking for—or when something has
gone wrong and you won't be looking at the results.

The? ; and? il methods returna 7 := object that exposes
properties called(: and7 F | . These tell you whether the loop ran to
completion, and if not, at what cycle the loop \wasken.

if7 F Y returns null, it means that you called (rather tharr !) on the loop.

If your loop body is long, you might want otherdhds to break partway through the method bodyse caan early
F ! or : .Youcando this by pollingthe I* (property at various places in your
code; this property becomes true immediately after —or soon after & !

> also becomes true after a cancellation requesifaorexception is thrown
in the loop.

B lets you know whether an exception has occurrednmther thread. Any unhandled exception will
cause the loop to stop after each thread’s cuitenation: to avoid this, you must explicitly haadixceptions in your
code.

Optimization with local values

? ; and? ;| each offer a set of overloads that feature a gehgre argument called
7 . These overloads are designed to help you optithizeollation of data with iteration-intensive jizo The
simplest is this:
0 ? 7= % / >
t,#
o#
8 / -3
D% #? 7 # /! 3/ >0 #
2 8 $

These methods are rarely needed in practice betlagis¢arget scenarios are covered mostly by PL(W®Qich is
fortunate because these overloads are somewhatdating!).

Essentially, the problem is this: suppose we waisuim the square roots of the numbers 1 throudd00O0.
Calculating 10 million square roots is easily piladable, but summing their values is troublesdrmeause we must
lock around updating the total:

08 ! 08
0o 3
? S EPPEEIEHH
> 1 M +

The gain from parallelization is more than offsgtthe cost of obtaining 10 million locks—plus thesultant blocking.

The reality, though, is that we don’t actuallged10 million locks. Imagine a team of volunteersiig up a large
volume of litter. If all workers shared a singlagh can, the travel and contention would make thegss extremely

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 103

inefficient. The obvious solution is for each warke have a private or “local” trash can, whiclocasionally emptied
into the main bin.

The 7 versions of and; | work in exactly this way. The volunteers are insworker threads, and the
local valuerepresents a local trash can. In order?for to do this job, you must feed it two additionaledmtes
that indicate:

1. How to initialize a new local value
2. How to combine a local aggregation with the magédue

Additionally, instead of the body delegate retugnin , it should return the new aggregate for the loadlie. Here’'s
our example refactored:

08 ! 08
0 $

? S EPPEEIEHH

> S S# . A

We must still lock, but only around aggregating liieal value to the grand total. This makes theepss dramatically
more efficient.

As stated earlier, PLINQ is often a good fit ingbescenarios. Our example could be parallelizeld RIINQ
simply like this:

? I 0 = &#&$$$$$$3

> M
(Notice thatweused | O to forcerange partitioning this improves performance in this case
because all numbers will take equally long to pssce
In more complex scenarios, you might use LINQ'’s operator instead of . If you supplied a local
seed factory, the situation would be somewhat guais to providing a local value function with
? .

1

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 104

Task Parallelism

Task parallelismis the lowest-level approach to parallelizatiothvRFX. The
classes for working at this level are defined im th !
namespace and comprise the following:

Class Purpose
! For managing a unit for work
%= > For managing a unit for work with a return value
I For creating tasks
L %= > For creating tasks and continuations with the sam

return type
! For managing the scheduling of tasks
I(: For manually controlling a task’s workflow
Essentially, a task is a lightweight object for ragimg a parallelizable unit of
work. A task avoids the overhead of starting a daigid thread by using the
CLR’s thread pool: this is the same thread pootluse

? K J , tweaked in CLR 4.0 to work more
efficiently with | s (and more efficiently in general).

Tasks can be used whenever you want to executetlsimgnén parallel. However,
they’retunedfor leveraging multicores: in fact, tire class and PLINQ
are internally built on the task parallelism counsts.

Tasks do more than just provide an easy and ffieiay into the thread pool.
They also provide some powerful features for mamgginits of work, including
the ability to:

Tune a task’s scheduling

Establish a parent/child relationship when one tasitarted from another
Implement cooperative cancellation

Wait on a set of tasks—without a signaling congtruc

Attach “continuation” task(s)

Schedule a continuation based on multiple antedeedsks

Propagate exceptions to parents, continuationstaakdconsumers

Get the whole book

Ch1: Introducing C#

Ch2: C# Language Basics

Ch3: Creating Types in C#
Ch4: Advanced C# Features
Ch5: Framework Fundamentals
Ch7: Collections

Ch8: LINQ Queries

Ch9: LINQ Operators

Ch10: LINQ to XML

Ch11: Other XML Technologies
Ch12: Disposal & Garbage Collection
Ch13: Code Contracts & Diagnostics
Ch14: Streams & I/O

Ch15: Networking

Ch16: Serialization

Ch17: Assemblies

Ch18: Reflection & Metadata
Ch19: Dynamic Programming
Ch20: Security

Ch21: Threading

Ch22: Parallel Programming
Ch23: Asynchronous Methods
Ch24: Application Domains
Ch25: Native and COM Interop
Ch26: Regular Expressions

C# 4.0 in a Nutshell

www.albahari.com/nutshell

Tasks also implemeihbcal work queuesan optimization that allows you to efficientlyeate many quickly executing
child tasks without incurring the contention oveatiehat would otherwise arise with a single work !

efficiency. The? class and PLINQ do this automatically.

The Task Parallel Library lets you create hund(@d®ven thousands) of tasks with minimal overh&ad.if
you want to create millions of tasks, you'll needpartition those tasks into larger work units taimtain

Visual Studio 2010 provides a new window for morniitg tasks (Debug | Window | Parallel Tasks). This
equivalent to the Threads window, but for taskse Plarallel Stacks window also has a special mod@éis.

Creating and Starting Tasks

As we described in Part 1 in our discussion ofalirpooling, you can create and start'a by calling

l; 5 , passing in an delegate:
1 5 >(7 X R)]

The generic version,!% = > (a subclass of !), lets you get data back from a task upon congpieti

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 105

o
/ YL M)
+
= @ |
|
l; 5 creates and starts a task in one step. You casugkrthese operations by first instantiating
a ! object, and then calling

Lo k)
|

A task that you create in this manner can alsaibesynchronously (on the same thread) by caling
instead of

You can track a task’s execution status viaits property.

Specifying a state object

When instantiating a task or calling ; 5 , you can specify atateobject, which is passed to the
target method. This is useful should you want tbacanethod directly rather than using a lambdaresgion:

oL 5 . 3
| |
+
08 (+ <
Given that we have lambda expressions in C#, wepoathestateobject to better use, which is to assign a meduing
name to the task. We can then use-the property to query its name:
[5 >, <) 3:
(7 - :
!
+
(+
Visual Studio displays each task’s in the Parallel Tasks window, so having a meanihgame

here can ease debugging considerably.

TaskCreationOptions
You can tune a task’s execution by specifying@a @: enum when calling 5 (or instantiating
a!) I(o: is a flags enum with the following (combinablejues:

7 =

7

-2
7 = suggests to the scheduler to dedicate a threth tiask. This is beneficial for long-running tablesause
they might otherwise “hog” the queue, and forcershmning tasks to wait an unreasonable amoutitraf before
being scheduled. = is also good for blocking tasks.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 106

The task queuing problem arises because the taskigler ordinarily tries to keep just enough tesbtive on
threads at once to keep each CPU core busyoWotsubscribinghe CPU with too many active threads avoifls
the degradation in performance that would occthiéfoperating system was forced to perform a lot of
expensive time slicing and context switching.

?2" tells the scheduler to try to ensure that taskssaheduled in the order they were started. It may
ordinarily do otherwise, because it internally ap#ies the scheduling of tasks using local workistgajueues. This
optimization is of practical benefit with very sihfdine-grained) tasks.

- ? is for creatingchild tasks

Child tasks

When one task starts another, you can optionatgbéish a parent-child relationship by specifying
I @: - ? :

| | 5 >

(70))

I 5 > / |
(7)))

+

I 5 > (!

(7)),)

H I @: 2

+

A child task is special in that when you wait fbeparenttask to complete, it waits for any children aslwehis can
be particularly useful when a child task is a comdition, as we’ll see shortly.

Waiting on Tasks

You can explicitly wait for a task to complete wat ways:

Calling its method (optionally with a timeout)

Accessing its property (in the case of!% = >)
You can also wait on multiple tasks at once—viadta¢ic methods ! - (waits for all the specified tasks to
finishyand ! - (waits for just one task to finish).

- is similar to waiting out each task in turn, baiiore efficient in that it requires (at most) jase context
switch. Also, if one or more of the tasks throwerandled exception, - still waits out every task—and then
rethrows a single I* that accumulates the exceptions from each fatdteld It's equivalent to doing
this:

&t B C IL
* 7 %lI*: >
& + — I* * *: _ * +
B + — I* * *: * +
C + - |* * *: - * +
1 (>% S o
Calling - is equivalent to waitingona = | that's signaled by each task as it finishes.

As well as a timeout, you can also pass in a ctatizel token to the methods: this lets you cancel the waitet
the task itself

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 107

Exception-Handling Tasks

When you wait for a task to complete (by callimgy it method or accessing its property), any unhandled
exceptions are conveniently rethrown to the calleapped in an I* : object. This usually avoids the
need to write codwithin task blocks to handle unexpected exceptions;adsiee can do this:
*$
% > I 5 >D~*
(7 =
+
_ I* *
(I - . 0%

You still need to exception-handle detached autanentasks (unparented tasks that are not waited) up@rder to
prevent an unhandled exception taking down theiegan when the task drops out of scope and ibagg-collected
(subject to the following note). The same appl@stésks waited upon with a timeout, because angmion thrown
after the timeout interval will otherwise be “unhandled.

The static ! JO n* . event provides a final last resort for dealinghwit
unhandled task exceptions. By handling this ewani,can intercept task exceptions that would otisaend
the application—and provide your own logic for deglwith them.

For parented tasks, waiting on the parent implicithits on the children—and any child exceptiorentbubble up:

(@ : I(@ - ?
: I 5 >
I 5 > (
[5 > +H#
+#
+
5 =" Ir:
- L
Interestingly, if you check a taski's : property after it has thrown an exception, theodiceading that

property will prevent the exception from subseqlyetatking down your application. The rationalehsit
PFX’s designers don’t want yoegnoring exceptions—as long as you acknowledge them in seaye they
won't punish you by terminating your program.

An unhandled exception on a task doesn’'t camseediateapplication termination: instead, it's delayedilunt
the garbage collector catches up with the taskcaiid its finalizer. Termination is delayed becaitsman’'t be
known for certain that you don't plan to call or check its- orl* : property until the task is
garbage-collected. This delay can sometimes misjieads to the original source of the error (altfio¥isual
Studio’s debugger can assist if you enable breasinfirst-chance exceptions).

As we’'ll see soon, an alternative strategy for ithgalvith exceptions is with continuations.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 108

Canceling Tasks

You can optionally pass in a cancellation token mvsiarting a task. This lets you cancel taskshgacboperative
cancellation pattern described previously:

To detect a canceled task, catchan 1* : and check the inner exception as follows:

+

If you want to explicitly throw ar®@: (I : (rather than calling
! 2(=M), you must pass the cancellation token into

@ (I*: 's constructor. If you fail to do this, the taskmoend up with a
| status and won't trigge® @ (continuations.

If the task is canceled before it has startedpih'tvget scheduled—a@: (1* : will instead be
thrown on the task immediately.

Because cancellation tokens are recognized by @&k, you can pass them into other constructscandellations will
propagate seamlessly:

(|
(1ol |
Y 5 >
? ! ?75KM L
M + -? + 1
+
+
Calling (on in this example will cancel the PLINQ query, whigill throw an
@ (I*: on the task body, which will then cancel the task.

The cancellation tokens that you can pass into oastsuch as and(

- allow you to cancel
thewait operation and not the task itself.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 109

Continuations

Sometimes it's useful to start a task right afiesther one completes (or fails). The method on the !
class does exactly this:

g 1 5 >())

1B & 1+ >())

As soon as !& (theantecedentfinishes, fails, or is canceled/B (thecontinuatior) automatically starts. (If
& had completed before the second line of code ré®, would be scheduled to execute right away.) The
argument passed to the continuation’s lambda egjmess a reference to the antecedent task.

Our example demonstrated the simplest kind of aolation, and is functionally similar to the follavg:

The continuation-based approach, however, is niexéfe in that you could first wait on!& , and then later wait on
IB . This is particularly useful if I& returns data.

Another (subtler) difference is that by defaultiesr@dent and continuation tasks may execute oerdift
threads. You can force them to execute on the shread by specifying

I(@: I* when calling(: this can improve
performance in very fine-grained continuations ésskning indirection.

Continuations and Task<TResult>

Just like ordinary tasks, continuations can beg/pét % = > and return data. In the following example, we
calculate M WRB using a series of chained tasks and then writ¢heutesult:

I 5% > >W

(> = RB

(> M =

(> (7 = S

Our example is somewhat contrived for simplicityréal life, these lambda expressions would catiatationally
intensive functions.

Continuations and exceptions

A continuation can find out if an exception wasothin by the antecedent via the antecedent task’s property.
The following writes the details ofa =" I* : to the console:
g 1 5 > +
B 1&(>(I* :
If an antecedent throws and the continuation failguery the antecedent’s: property (and the
antecedent isn't otherwise waited upon), the exeeps considered unhandled and the applicatios (ialess
handled by ! JO 1>).

A safe pattern is to rethrow antecedent exceptidagong as the continuation is ed upon, the exception will be
propagated and rethrown to the er:

! K 5 > +
(>
#% , 5 #0, $
(.
+
* 0!

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 110

Another way to deal with exceptions is to speciffedent continuations for exceptional versus nareptional
outcomes. This is done withi(@: :

g I, 5 > N

L& >(L
1 4, 448

11&(> () 6)#
1 4, >48
This pattern is particularly useful in conjunctieith child tasks, as we’ll see very soon.
The following extension method “swallows” a tasldishandled exceptions:
:0 A [
I(> I*: +#
(@ @ @;

+
(This could be improved by adding code to log tkeeption.) Here’s how it would be used:
I 5 > +, I*:
Continuations and child tasks

A powerful feature of continuations is that thegkff only when all child tasks have completed tit point, any
exceptions thrown by the children are marshalegtieacontinuation.

In the following example, we start three child skach throwinga =" I* : . We then catch all of
them in one fell swoop via a continuation on theepa
I @: 0 @ - ?
[5 >
L 5 > +H
L 5 > +H
I 5 > +H#
+
(>(7 #
I @ @ @

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 111

Conditional continuations

By default, a continuation is scheduledconditionally—whether the antecedent completes, throws an drcer is
canceled. You can alter this behavior via a s¢tambinable) flags included within the(@:
enum. The three core flags that control conditiamaaitinuation are:

5@= (: $&SePHH
5@; $'BISSBH
5@($Sees$H

These flags are subtractive in the sense that tire gou apply, the less likely the continuatiowigxecute. For
convenience, there are also the following precostbivalues:

44 1, 5@; P5@(#
4 48 5@= (: P5@(#
4 41 5@= (: P5@;
(Combining allthes R flagsp @ = (: 5 @; 5 @ (] is nonsensical, as it would

result in the continuation always being canceled.)

“RanToCompletion” means the antecedent succeedetheumticancellation or unhandled exceptions.
“Faulted” means an unhandled exception was thromwthe antecedent.

“Canceled” means one of two things:

The antecedent was canceled via its cancellaticentdn other words, a@: (I* : was
thrown on the antecedent—whdse ! property matched that passed to the antecedent ivhe
was started.

The antecedent was implicitly canceled becaudin’t satisfy a conditional continuation predeat

It's essential to grasp that when a continuatioestiét execute by virtue of these flags, the comtiimn is not forgotten
or abandoned—it'sanceled This means that any continuations on the contionatselfwill then run—unless you

predicate them with @ (. For example, consider this:
1& I 5
" &(>(7 Y)#
I(@: @ @;
1c" > (7)O)

As it stands,C will always get scheduled—even & doesn’t throw an exception. This is becaus& ifucceeds, the
task will becanceledand with no continuation restrictions placed©n C will then execute unconditionally.

If we want C to execute only if actually runs, we must instead do this:
1c " (>(7 YC)#
1 4, >41
(Alternatively, we could specif@ @ = (: ; the difference is tha€ would not then execute if an
exception was thrown withih J)

Continuations with multiple antecedents

Another useful feature of continuations is that gan schedule them to execute based on the completimultiple

antecedents. - schedules execution when all antecedents haveletedp -
schedules execution when one antecedent complés methods are defined in the; class:
& I 5 >()Z)
B I 5 >()

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 112

o (-
GH 1&# B+t | >(7 Y)

This writes “Done” after writing “XY” or “YX”. The ! argument in the lambda expression gives you adodbe
array of completed tasks, which is useful whenati@cedents return data. The following example sagksther
numbers returned from two antecedent tasks:

& B D "L

% > 1& I; 5 >&BC

% > 1B I 5 >S3Vv

1% > IC | o (-

GH 1&# B+t !> 1 > =
(7 IC= 3DE
We've included thés > type argument in our call to! ; in this example to clarify that we're
obtaining a generic task factory. The type argun®nhnecessary, though, as it will be inferredhwsy
compiler.

Multiple continuations on a single antecedent

Calling (more than once on the same task creates multiplgnciations on a single antecedent. When
the antecedent finishes, all continuations wilttstiagether (unless you specify
I(@: I* , in which case the continuations will execute saqjally).

The following waits for one second, and then wragker “XY” or “YX":
L 5 > : &3
(>()2)
(>())

Task Schedulers and Uls

A task scheduleallocates tasks to threads. All tasks are assatiaith a task scheduler, which is representedby t
abstract ! class. The Framework provides two concrete impieat®ns: thedefault schedulethat

works in tandem with the CLR thread pool, andgimechronization context schedul&he latter is designed (primarily)
to help you with the threading model of WPF and dléws Forms, which requires that Ul elements androtsare
accessed only from the thread that created themexample, suppose we wanted to fetch some datadraeb service
in the background, and then update a WPF labetatall= with its result. We can divide this into two tasks

1. Call a method to get data from the web servicee@uent task).
2. Update0 = with the results (continuation task).

If, for a continuation task, we specify thgnchronization context schedutdstained when the window was constructed,
we can safely updateé = :

Q 81 F 1%

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 113

It's also possible to write our own task schedisrsubclassing !), although this is something you'd do
only in very specialized scenarios. For custom duatieg, you'’d more commonly use!(: , Which
we’ll cover soon.

TaskFactory

When you call !; , you're calling a static property ont that returns a default!; object. The
purpose of a task factory is to create tasks—sigadif, three kinds of tasks:

“Ordinary” tasks (via 5)

Continuations with multiple antecedents (yia - and(-)

Tasks that wrap methods that follow the asynchremmogramming model (via -)

Interestingly, R is theonly way to achieve the latter two goals. In the cdse & ,
is purely a convenience and technically redundatitat you can simply instantiate
objects and call on them.

Creating your own task factories

I is not armabstractfactory: you can actually instantiate the classl this is useful when you want to
repeatedly create tasks using the same (nonstgnddugs for !|(@: ;I @: ,

or ! . For example, if we wanted to repeatedly creatglaunningparentedtasks, we could create a
custom factory as follows:

’

(@ 7= PI(@: -2 #
(@ 5
Creating tasks is then simply a matter of calling on the factory:
Lg 5 &
1B 5 B
The custom continuation options are applied whéimga(- and(-

TaskCompletionSource

The ! class achieves two distinct things:
It schedules a delegate to run on a pooled thread.
It offers a rich set of features for managing wibekns (continuations, child tasks, exception mdispaetc.).

Interestingly, these two things are not joinechathip: you can leverage a task’s features for giagavork items
without scheduling anything to run on the threadlp®dhe class that enables this pattern of usalisat

I(:

Touse !(: you simply instantiate the class. It exposed a property that returns a task upon
which you can wait and attach continuations—jusa kny other task. The task, however, is entirehtrolled by the
I(: object via the following methods:
:0 I(: %= >
0 = =
:0 Pooopeox
:0 (
00 = =
00 (G
00 (

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 114

If called more than once,= B ,or (throws an exception; theR methods instead
return”

= corresponds to the task’s result type, $0: % > givesyoua % > . If
you want a task with no result, create4 : of 08 and pass in when calling
= . You can then cast thel% 08 > to !

The following example prints 123 after waiting fore seconds:

I(: % >
> : 35%% = &BC +
1% > | I @)) !
(7 1= &BC
In “Concurrent Collections,” we show haw ! (can be used to write a producer/consumer queue. We
then demonstrate howi(: improves the solution by allowing queued work isstm be waited

upon and canceled.

Working with AggregateException

As we've seen, PLINQ, the class, and ! s automatically marshal exceptions to the consufresee why
this is essential, consider the following LINQ quewhich throwsd FY [* : on the first iteration:

M " 1 0= S$HESEHS$ $
&$$

+
I FY I*: +

If we asked PLINQ to parallelize this query aniyjitored the handling of exceptions, aFY I* :
would probably be thrown onseparate threadbypassing our block and causing the application to die.

Hence, exceptions are automatically caught andaoetinto the caller. But unfortunately, it's not tias simple as
catchingad FY I*: . Because these libraries leverage many threasiscitually possible for two or
more exceptions to be thrown simultaneously. Taenthat all exceptions are reported, exceptioastarefore
wrapped in an I* : container, which exposes anl* : property containing each of the
caught exception(s):

M " 2?2 | 0= $ EEFCRANNNANY
&$$

I M

+
2 #%, *
. * * - #% ,

(7=
+
Both PLINQ and the class end the query or loop execution upon eneoimgf the first exception—
by not processing any further elements or loop émdiiore exceptions might be thrown, however, teetbe
current cycle is complete. The first exceptionin I* : is visible inthe I* :
property.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 115

Flatten and Handle
The- I* : class provides a couple of methods to simplifyetion handling; and<

Flatten

- I* s will quite often contain other I* : s. An example of when this might happen
is if a child task throws an exception. You camétiate any level of nesting to simplify handling ¢alling;
This method returns a new |* : with a simple flat list of inner exceptions:

I*- *

+

Handle

Sometimes it's useful to catch only specific examptypes, and have other types rethrown. ¥he method on
- I* provides a shortcut for doing this. It accept®aception predicate which it runs over every
inner exception:

0 < 5 %I*: #0 >:

If the predicate returns , it considers that exception “handled.” After tledegate has run over every exception, the
following happens:
If all exceptions were “handled” (the delegate ne¢dl), the exception is not rethrown.
If there were any exceptions for which the delegaterned' (“unhandled”), a new I* is
built up containing those exceptions, and is retimo
For instance, the foIIowmg ends up rethrowing apot I* : that contains a single
5 =" %
| : 5 >
T C*: C L
GH 0 $+
; 8
(@ - ? # @: 5
5 >3 0 G$H [/ 0A
; 5 >0 G&H , 2
; 5 > + 5 "
+
+
_ I* - *
%8 *> 5
* | FY I*

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 116

Concurrent Collections

Framework 4.0 provides a set of new collectionthen ((namespace. All of these
are fully thread-safe:

Concurrent collection Nonconcurrent equivalent
(1% > 1% >

(K %> K %>

(F %> (none)

FI(% > (none)

(/ % #N > / % # N >

The concurrent collections can sometimes be usefytneral multithreading when you need a threde-sallection.
However, there are some caveats:

The concurrent collections are tuned parallel programming The conventional collections outperform themlin a
but highly concurrent scenarios.

A thread-safe collection doesn’'t guarantee thatte using it will be thread-safe (see “Threade &Y.

If you enumerate over a concurrent collection whitether thread is modifying it, no exception iothn—instead,
you get a mixture of old and new content.

There’s no concurrent version of % >

The concurrent stack, queue, and bag classes ptenranted internally with linked lists. This makbBsm less
memory-efficient than the nonconcurrent andK classes, but better for concurrent access bediakse
lists are conducive to lock-free or low-lock implemtations. (This is because inserting a node itittkad list
requires updating just a couple of references,annierting an element intora % > -like structure may require
moving thousands of existing elements.)

In other words, these collections don’'t merely jewshortcuts for using an ordinary collection vatlock. To
demonstrate, if we execute the following code amglethread:

(/I %#>
$ %&PES " GH &BC

it runs three times more slowly than this:

I % # >
$ % &SSP " GH &BC
(Readingfrom a(/ , however, is fast because reads are lock-free.)

The concurrent collections also differ from convwemnal collections in that they expose special mdsho perform
atomic test-and-act operations, such & . Most of these methods are unified via the
20 | % > interface.

IProducerConsumerCollection<T>

A producer/consumer collection is one for which tilve primary use cases are:
Adding an element (“producing”)
Retrieving an element while removing it (“consuniing

The classic examples are stacks and queues. Prachreimer collections are significant in pargtiedgramming
because they're conducive to efficient lock-fre@liementations.

The,? ((% > interface represents a thread-safe producer/cagrscotiection. The
following classes implement this interface:

(1% >

(K %>

(F%>

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 117

20 | % > extends(, adding the following methods:

The - and ! methods test whether an add/remove operation egeiformed, and if so, they perform the
add/remove. The testing and acting are performaahiatlly, eliminating the need to lock as you woatdund a
conventional collection:

I >$ 12
! returns’ if the collection is empty. - always succeeds and returns in the three
implementations provided. If you wrote your own carrent collection that prohibited duplicates, heer you'd make
- return” if the element already existed (an example woeldf pou wrote a concurrese).

The particular element that ! removes is defined by the subclass:

With a stack, ! removes the most recently added element.

With a queue, ! removes the least recently added element.

With a bag, ! removes whatever element it can remove most effity.
The three concrete classes mostly implement the and - methods explicitly, exposing the same
functionality through more specifically named pebtiethods such as M and ?:
ConcurrentBag<T>
(F %> stores amunorderedcollection of objects (with duplicates permitted). F % > is

suitable in situations when yalon't carewhich element you get when calling or !

The benefit of F %> over a concurrent queue or stack is that a bag’snethod suffers almosio
contention when called by many threads at onceohtrast, calling in parallel on a queue or stack incane
contention (although a lot less than locking aroandnconcurrentollection). Calling! on a concurrent bag is also
very efficient—as long as each thread doesn’t takee elements than-t ed.

Inside a concurrent bag, each thread gets it owaterlinked list. Elements are added to the pevet that belongs to
the thread calling , eliminating contention. When you enumerate okerliag, the enumerator travels through each
thread’s private list, yielding each of its elenseint turn.

When you call !, the bag first looks at the current thread’s pEvist. If there’s at least one eleméiitcan
complete the task easily and without contentiort.iBlle list is empty, it must “steal” an elemdrdm another thread’s
private list and incur the potential for contention

So, to be precise, calling gives you the element added most recently onthinaad; if there are no elements on that
thread, it gives you the element added most recentianother thread, chosen at random.

Concurrent bags are ideal when the parallel operatn your collection mostly comprises ing elements—or when
the- sand! sare balanced on athread. We saw an example ébtimer previously, when using
? il to implement a parallel spellchecker:

(F%:%# >>
? # # O# >

"6 7!:(
o= #
+

A concurrent bag would be a poor choice for a pcediconsumer queue, because elements are addeenaoed by
differentthreads.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 118

BlockingCollection<T>

If you call ! on any of the producer/consumer collections weudised previously:
(1% >
(K %>
(F%>

and the collection is empty, the method retdrns . Sometimes it would be more useful in this scentrivait until
an element is available.

Rather than overloading the ! methods with this functionality (which would havaused a blowout of members
after allowing for cancellation tokens and timepuPFX’'s designers encapsulated this functionatity a wrapper class
calledF ! (% > . A blocking collection wraps any collection thatplements

200 | % > and lets you! an element from the wrapped collection—blockingaf

element is available.

A blocking collection also lets you limit the totsike of the collection, blocking throducerif that size is exceeded. A
collection limited in this manner is calledbaunded blocking collection

Touser ! (% >

1. Instantiate the class, optionally specifying the ((% > to wrap and the
maximum size (bound) of the collection.

2. Call- or - to add elements to the underlying collection.

3. Call!' or ! to remove (consume) elements from the underlyoilgction.
If you call the constructor without passing in dl@ction, the class will automatically instantiate
(K %> . The producing and consuming methods let you $peancellation tokens and timeous.
and - may block if the collection size is bounded; and ! block while the collection is empty.
Another way to consume elementsistocdll | 0 . This returns a (potentially) infinite sequence
that yields elements as they become available.cémuforce the sequence to end by calling - : this
method also prevents further elements from beingened.
Previously, we wrote a producer/consumer queuggusin and? (see “Signaling with Wait and Pulse”). Here’s
the same class refactored to &se (% > (exception handling aside):

0 ?2K L/:O

7 1 2 !'=57 1 2 3
0 2K I (
(o L
$ % 1(
| : 5 (
+
o / =1, 2 +
0 M I - 1 =2 $ +
(
M T
0 (: -
- I =1 # &
2"
+
+
Because we didn’t pass anything ifto! ('s constructor, it instantiated a concurrent queue
automatically. Had we passed i a ! , we'd have ended up with a producer/consumer stack

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 119

F I also provides static methods called- and !; - , which let you add or take an
element while specifying several blocking collenoThe action is then honored by the first coltecable to service
the request.

Leveraging TaskCompletionSource

The producer/consumer that we just wrote is infiexin that we can’t track work items after theyheen enqueued. It
would be nice if we could:

Know when a work item has completed.
Cancel an unstarted work item.
Deal elegantly with any exceptions thrown by a wibekn.

An ideal solution would be to have thiel ! method return some object giving us the functibyalst
described. The good news is that a class alreadisar do exactly this—the! class. All we need to do is to hijack
control of the task via !(: :

0 ?2K L/:O

1, &9

coo
.
.

FI(%! >QK F! (%L >

0 2K ! (

0 "Mt #(14 !

. 5 1, &9 $
QK- I, # # !

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 120

L (
L (!N =M
A (
+
-
Lo! ,
+
|* *
Lo #% , *
+
+
+
IntMm ! , we enqueue a work item that encapsulates thettdagegate and a task completion source—which
lets us later control the task that we return ®odbnsumer.
In (, we first check whether a task has been cancéleddequeuing the work item. If not, we run théedate
and then call = on the task completion source to indicate its detmgm.

Here’s how we can use this class:

K 2K &
PLCKIM L >(7)l 6)
We can now waiton! , perform continuations on it, have exceptions pgaie to continuations on parent tasks, and

so on. In other words, we've got the richness efttsk model while, in effect, implementing our osameduler.

SpinLock and SpinWait

In parallel programming, a brief episode of spimis often preferable to blocking, as it avoids ¢bst of context
switching and kernel transitions.7 ! and : are designed to help in such cases. Their maifsuse
writing custom synchronization constructs.

A and : are structs and not classes! This design decigaanan extreme optimization
technique to avoid the cost of indirection and gabcollection. It means that you must be careftitm
unintentionallycopyinstances—by passing them to another method witheu" modifier, for instance, or

declaring them as fields. This is particularly important in the casfe: 7 !
SpinLock
The: 7! struct lets you lock without incurring the costaofontext switch, at the expense of keeping athre

spinning (uselessly busy). This approach is valibigh-contention scenarios when locking will bewerief (e.g., in
writing a thread-safe linked list from scratch).

If you leave a spinlock contended for too long (wealking milliseconds at most), it will yield itsne slice,
causing a context switch just like an ordinary lodkhen rescheduled, it will yield again—in a conghcycle
of “spin yielding.” This consumes far fewer CPUagarces than outright spinning—but more than blogkin

On a single-core machine, a spinlock will startifisgielding” immediately if contended.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 121

Usinga: 7 ! is like using an ordinary lock, except:
Spinlocks are structs (as previously mentioned).

Spinlocks are not reentrant, meaning that you caceailbl on the same 7 ! twice in a row on the same
thread. If you violate this rule, it will eitherrtbw an exception (ibwner trackingis enabled) or deadlock (if owner
tracking is disabled). You can specify whetherrialde owner tracking when constructing the spinl@kner
tracking incurs a performance hit.

D7 lets you query whether the lock is taken, viagheperties < and, if owner tracking is enabled,
< F(
There’s no equivalent to C#'d statement to provide 7 ! syntactic sugar.
Another difference is that when you call , youmustfollow the robust pattern of providing d ! argument
(which is nearly always done withina /" block).

Here’s an example:

STV T 10 !
o !
] o# $
[
+
A #H% S
+
As with an ordinary lock, ! ! will be " after callingl if (and only if) thel method throws an
exception and the lock was not taken. This happewsry rare scenarios (such-8s being called on the thread, or
an@ @" I*: being thrown) and lets you reliably know whethestibsequently calt
D7 also provides a method which accepts a timeout.
Given: 7! 's ungainly value-type semantics and lack of lamgusupport, it's almost as if theyantyou

to suffer every time you use it! Think carefullyfbee dismissing an ordinary!

A:T7! makes the most sense when writing your own reasapichronization constructs. Even then, a spini®ck
not as useful as it sounds. It still limits conewnty. And it wastes CPU time doingthing usefulOften, a better choice
is to spend some of that time doing somethipgculative—with the help of:

SpinWait

helps you write lock-free code that spins rathantblocks. It works by implementing safeguardavoid the
dangers of resource starvation and priority ingershat might otherwise arise with spinning.

Lock-free programming with is ashardcoreas multithreading gets and is intended for whemenaf
the higher-level constructs will do. A prerequisgao understand “Nonblocking Synchronization”.

Why we need SpinWait

Suppose we wrote a spin-based signaling systendipasely on a simple flag:

0 Q:
: Q: L
6Q: F
+
This would be highly efficient if ran whernQ: was already true—or : became true within a few
cycles. But now suppose that remained false for several seconds—and that foeatls called at once.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 122

The spinning would then fully consume a quad-coP&JCThis would cause other threads to run slowdgdurce
starvation)—including the very thread that migh¢etually sef: to true (priority inversion). The situation is
exacerbated on single-core machines, where spimilhgearly alwayscause priority inversion. (And although single-
core machines are rare nowadays, single-eioneal machinesare not.)

addresses these problems in two ways. FirstnitdiCPU-intensive spinning to a set number oftiens,
after which it yields its time slice on every sy calling and :), lowering its resource
consumption. Second, it detects whether it's rugimin a single-core machine, and if so, it yieldswery cycle.

How to use SpinWait

There are two ways to use . The first is to call its static method,J . This method accepts a predicate
(and optionally, a timeout):
0 Q:
,+ . < ? "7 $ L, $@%
+
The other (more flexible) way to use is to instantiate the struct and then to cai@ in a loop:
0 Q:
+ 5,+ %
6Q F .4 +

The former is a shortcut for the latter.

How SpinWait works

In its current implementation, performs CPU-intensive spinning for 10 iteratitwefore yielding. However, it
doesn't return to the callammediatelyafter each of those cycles: instead, it calls : to spin via the
CLR (and ultimately the operating system) for atgeé period. This time period is initially a fewarts of nanoseconds,
but doubles with each iteration until the 10 itenas are up. This ensures some predictability éenttital time spent in
the CPU-intensive spinning phase, which the CLR@mefrating system can tune according to conditidgpically, it's
in the few-tens-of-microseconds region—small, boterthan the cost of a context switch.

On a single-core machine, yields on every iteration. You can test whether will yield on the next
spin via the propert$ * :

Ifa : remains in “spin-yielding” mode for long enoughaybe 20 cycles) it will periodicallsieepfor a few
milliseconds to further save resources and helprdtireads progress.

Lock-free updates with SpinWait and Interlocked.Com pareExchange

in conjunction with, ! (@ I* can atomically update fields with a value calcedit
from the original (read-modify-write). For exampseippose we want to multiply fieldby 10. Simply doing the
following is not thread-safe:

* *R&S$
for the same reason that incrementing a field temead-safe, as we saw in “Nonblocking Synchratidn”.
The correct way to do this without locks is asduls:

4. Take a “snapshot” of into a local variable.

5. Calculate the new value (in this case by multiglyihe snapshot by 10).

6. Write the calculated value baifkhe snapshot is still up-to-date (this step mestine atomically by calling
;b (s).

7. If the snapshot was stakpinand return to step 1.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 123

For example:

*

1 ZF
v 5,+ 8
D&
F
. &R
' 1, #% %3 3, *$
& : B 5 -
408
+
+
We can improve performance (slightly) by doing awath the call to F . We can get
away with this becauge: I* generates a memory barrier anyway—so the worstdrahappen
is an extra spinif : & happens to read a stale value in its first iterati
G updates a field with a specified valifi¢he field's current value matches the third

argument. It then returns the field’s old valueysa can test whether it succeeded by comparirtgatieinst the
original snapshot. If the values differ, it mealmattanother thread preempted you, in which casesgouand try again.

(: is overloaded to work with thés type too. We can leverage this overload by writirlgck-
free update method that works with all referengesy
7503 %> """ #, % #>
L
,t 5,+ 8
D&
- D&
, - 1, #% 3 3,°*%
& B
.48

+
+

Here’s how we can use this method to write a thusesdd event without locks (this is, in fact, whae IC# 4.0 compiler
now does by default with events):

I < Q/
:0 | < I

715 3J "Q I # > ' +

753 "Q/ # > 1+
+

SpinWait Versus SpinLock

We could solve these problems instead by wrappiiegss to the shared field around & ! . The
problem with spin locking, though, is that it allewnly one thread to proceed at a time—even thehegh
spinlock (usually) eliminates the context-switchmgerhead. With: , we can proceed speculatively

andassumeno contention. If we do get preempted, we simphagain. Spending CPU time doing something
thatmightwork is better than wasting CPU time in a spinlock

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 124

Finally, consider the following class:

? Q ? $#))
2 ., 0
:0 ?
:0
0 ? (: #
? (: (
+
+
+
We can use our !; J: method to “increment” the (: field inQ as follows:
753 "Q #
> ? ? (: '&#
Notice that we're creating a new object based on existing values. Thanks torthe J:
method, the act of reading the existihg (: value, incrementing it, and writing it back cagétunsafely

preempted: any preemption is reliably detectedgéting a spin and retry.

© 2006-2010 Joseph Albahari, O'Reilly Media, Indl. ights reserved. www.albahari.com/threading/ 125

