21a

Code Access Security

Code Access Security (CAS) allows the CLR to create a locked-dowrsandboxed environment that prevents
code from performing certain kinds of operationgtsas reading operating system files, performiiigction,
or creating a user interface). The sandboxed emviemt created by CAS is referred to gmstial trust
environment, whereas the normal unrestricted enwient is referred to dall trust.

CAS was considered strategic in the early dayBIBfT, as it enabled the following:

* Running C# ActiveX controls inside a web browsée(lJava applets)

» Lowering the cost of shared web hosting by allowingitiple web sites to run inside the same .NET
process

» Deploying permission-restricted ClickOnce applicati via the Internet

The first two are no longer relevant, and the tiwets always of dubious value, because end-usermiikely
to know or understand the consequences of restntemission sets prior to installation. And wtiltere are
other use-cases for CAS, they are more special&édrther problem is that the sandbox created By @ not
entirely robust: Microsoft stated in 2015 that C&t#®uld not be relied upon as a mechanism for eimfgprc
security boundaries (and CAS has been largely decdrom .NET Standard 2.0). This is in spite & th
improvements to CAS introduced with CLR 4 in 2010.

Sandboxing that does not rely on CAS is still vegltl alive: UWP applications run in a sandbox, aS@a
CLR libraries. These sandboxes are enforced bypkeeating system or hosted CLR, and are more rdbast
CAS sandboxes, as well as being simpler to undetsiad manage. Operating system security also waitks
unmanaged code, so a UWP app cannot read/writeeaagbiiles, whether written in C# or C++.

For these reasons, we omitted CAS fre#h7.0 in a Nutshell, and have published the material on CAS is this
addendum. If you're a library author, you may stiéled to cater for partial trust environments fopsut older
platforms.

The types covered in this chapter are definederfaHowing namespaces:

System.Security;
System.Security.Permissions;
System.Security.Principal;
System.Security.Cryptography;

Permissions

We discussed permissions in Chapter 21 of C# 7a0Nmitshell, in the context of identity and rolesgty.
We're now going to revisit them in the context ci&

The Framework uses permissions for both sandbamagauthorization. Adermission acts as a gate that
conditionally prevents code from executing. Sandibgxiseode access permissions; authorization uses
identity androle permissions.

© Joseph Albahari, 2007-2017 1

Although both follow a similar model, they feel tpdifferent to use. Part of the reason for thiha they
typically put you on a different side of the fenegth code access security, you're usually thixusted party;
with identity and role security, you're usually thiatrusting party. Code access security is most often forced
upon you by the CLR or a hosting environment sStA&P.NET or ClickOnce, whereas authorization is
usually something you implement to prevent unpeiyéld callers from accessing your program.

CodeAccessPermission and PrincipalPermission

There are essentially two kinds of permissions:

CodeAccessPermission
The abstract base class for all code access sed@AS) permissions, such a&sleIOPermission,
ReflectionPermission, orPrintingPermission

PrincipalPermission
Describes an identity and/or role (e.g., “Mary™bluman Resources”)

The termpermission is somewhat misleading in the case&ofieAccessPermission, because it suggests
something has been granted. This is not necesshagilyase. AodeAccessPermission object describes a
privileged operation.

For instance, aileIOPermission object describes the privilege of being abledad, Write, or Append to a
particular set of files or directories. Such aneabjcan be used in a variety of ways:

» To verify that you and all your callers have ttghts to perform these actiors=fiand)
» To verify that your immediate caller has the rigiatperform these actionsi(nkDemand)

e Totemporarily escape a sandbox andert your assembly-given rights to perform these astion
regardless of callers’ privileges

You'll also see the following security actions imet CLR: Deny, RequestMinimum,
RequestOptional, RequestRefuse, and PermitOnly. However, these (along with link
demands) have been deprecated or discouraged Biaocgework 4.0, in favor of the new
transparency model (see “The Transparency Model”).

PrincipalPermission is much simpler. Its only security methodisnand, which checks that the specified
user or role is valid given the current executioread.

IPermission
Both CodeAccessPermission andPrincipalPermission implement thelPermission interface:

public interface IPermission
{
void Demand();
IPermission Intersect (IPermission target);
IPermission Union (IPermission target);
bool IsSubsetOf (IPermission target);
IPermission Copy();

}

The crucial method here iemand. It performs a spot-check to see whether the psion or privileged
operation is currently permitted, and it throwSeaurityException if not. If you're theuntrusting party,you
will be Demanding. If you're theuntrusted party, code that yocall will be Demanding.

We saw in Chapter 21 of C# 7.0 in a Nutshell howse a&PrincipalPermssion to Demand that only Mary
can run management reports:

new PrincipalPermission ("Mary", null).Demand();
// ... run management reports

In contrast, suppose your assembly was sandboxédtisat file I/O was prohibited. The following lineould
then throw &ecurityException:

using (FileStream fs = new FileStream ("test.txt", FileMode.Create))

© Joseph Albahari, 2007-2017 2

TheDemand, in this case, is made by code that you call—heptvordsfFileStream’s constructor:

new FileIOPermission (...).Demand();

A code access securiemand checks right up the call stack, in order to enghat the
requested operation is allowed for every party e talling chain (within the current
application domain). Effectively, it's asking, “lghis application domain entitled to this
permission?”

With code access security, an interesting casesamsth assemblies that run in the GAC,
which are considerefllly trusted. If such an assembly runs in a sandbox, Bemands that it
makes are still subject to the sandbox’s permissainFully trusted assemblies can, however,
temporarily escape the sandbox by callingssert on aCodeAccessPermission object.
After doing so,Demands for the permissions that were asserted alwaysesdc AnAssert
ends either when the current method finishes or nwheyou call
CodeAccessPermission.RevertAssert.

TheIntersect andunion methods combine two same-typed permission objettone. The purpose of
Intersect is to create a “smaller” permission object, wheréee purpose afnion is to create a “larger”
permission object.

With code access permissions, a “larger” permiselgject ismore restrictive whememanded, because a
greater number of permissions must be met.

(With principle permissions, a “larger” permissiobject isless restrictive whememanded, because oniyne of
the principles or identities is enough to satisiy temand.)

PermissionSet

A PermissionSet represents a collection of differently typgekrmission objects. The following creates a
permission set with three code access permissamustherbemands all of them in one hit:

PermissionSet ps = new PermissionSet (PermissionState.None);

ps.AddPermission (new UIPermission (PermissionState.Unrestricted));
ps.AddPermission (new SecurityPermission (

SecurityPermissionFlag.UnmanagedCode));
ps.AddPermission (new FileIOPermission (FileIOPermissionAccess.Read, @"c:\docs"));
ps.Demand();

PermissionSet’s constructor acceptsPermissionState enum, which indicates whether the set should be
considered “unrestricted.” An unrestricted pernuasset is treated as though it contained everyilpless
permission (even though its collection is emptygs@mblies that execute with unrestricted code amsurity
are said to béully trusted.

AddPermission appliesUnion-like semantics in that it creates a “larger” €&lling AddPermission on an
unrestricted permission set has no effect (asetdly has, logically, all possible permissions).

You canunion andIntersect permission sets just as you can witlermission objects.

Declarative Versus Imperative Security

So far, we manually instantiated permission objaats calledemand on them. This ismperative security.
You can achieve the same result by adding attribisteén method, constructor, class, struct, or asesthis is
declarative security. Although imperative security is more flexible cthrative security has three advantages:

* It can mean less coding.
e Itallows the CLR to determine in advance what pssions your assembly requires.
» It can improve performance.

For example:

© Joseph Albahari, 2007-2017 3

[PrincipalPermission (SecurityAction.Demand, Name="Mary")]
public ReportData GetReports()
{

}...

[UIPermission(SecurityAction.Demand, Window=UIPermissionWindow.AllWindows)]
public Form FindForm()

{

}...

This works because every permission type haser sititibute type in the .NET Framework.
PrincipalPermission has &PrincipalPermissionAttribute sister. The first argument of the attribute’s
constructor is always $ecurityAction, which indicates what security method to call otieepermission
object is constructed (usualbgmand). The remaining named parameters mirror the pt@seon the
corresponding permission object.

Code Access Security Permissions
TheCodeAccessPermission types that are enforced throughout the .NET Fraonkare listed by category in

Table 21a-1 through Table 21a-6. Collectively, ¢hare intended to cover all the means by whictogram
can do mischief!

Table 21a-1. Core permissions

Type Enables

SecurityPermission Advanced operations, such as calling unmanaged code
ReflectionPermission Use of reflection

EnvironmentPermission Reading/writing command-line environment settings
RegistryPermission Reading or writing to the Windows Registry

SecurityPermission accepts @ecurityPermissionFlag argument. This is an enum that allows any
combination of the following:

AllFlags ControlThread
Assertion Execution
BindingRedirects Infrastructure
ControlAppDomain NoFlags
ControlbomainPolicy RemotingConfiguration
ControlEvidence SerializationFormatter
ControlPolicy SkipVerification
ControlPrincipal UnmanagedCode

The most significant member of this enuntiscution, without which code will not run. The other member
should be granted only in full-trust scenarios,suse they enable a grantee to compromise or eacsgradbox.
ControlAppDomain allows the creation of new application domaing (€&apter 24)ynmanagedCode allows
you to call native methods (see Chapter 25).

ReflectionPermission accepts &eflectionPermissionFlag enum, which includes the members
MemberAccess andRestrictedMemberAccess. If you're sandboxing assemblies, the latter ferst grant
while permitting reflection scenarios required bil8 such as LINQ to SQL.

Table 21a-2. |/O and data permissions

Type Enables
FileIOPermission Reading/writing files and directories
FileDialogPermission Reading/writing to a file chosen through an Open

or Save dialog box
IsolatedStorageFilePermission Reading/writing to own isolated storage

© Joseph Albahari, 2007-2017 4

ConfigurationPermission

SglClientPermission, OleDbPermission,

OdbcPermission

DistributedTransactionPermission

Reading of application configuration files

Communicating with a database server using the
SglClient, OleDb, or0dbc class

Participation in distributed transactions

FileDialogPermission controls access to tli@enFileDialog andSaveFileDialog classes. These classes
are defined imicrosoft.Win32 (for use in WPF applications) anddgstem.Windows.Forms (for use in
Windows Forms applications). For this to woskpPermission is also requiredzileIOPermission is not

also required, however, if you access the choseyi callingopenFile on theOpenFileDialog or

SaveFileDialog object.

Table 21a-3. Networking permissions
Type

DnsPermission

WebPermission
SocketPermission
SmtpPermission

NetworkInformationPermission

Table 21a-4. Encryption permissions
Type
DataProtectionPermission
KeyContainerPermission

StorePermission

Table 21a-5. Ul permissions
Type

UIPermission
WebBrowserPermission
MediaPermission

PrintingPermission

Table 21a-6. Diagnostics permissions
Type
EventLogPermission

PerformanceCounterPermission

Enables

DNS lookup

WebRequest-based network access
Socket-based network access

Sending mail through the SMTP libraries

Use of classes such esng andNetworkInterface

Enables

Use of the Windows data protection methods
Public key encryption and signing

Access to X.509 certificate stores

Enables

Creating windows and interacting with the clipboard
Use of thenebBrowser control

Image, audio, and video support in WPF

Accessing a printer

Enables
Reading or writing to the Windows event log
Use of Windows performance counters

Demands for these permission types are enforced wittenHET Framework. There are also some permission
classes for which the intention is timatnands are enforced in your own code. The most impoxtattiese are
concerned with establishing identity of the callagsembly, and are listed in Table 21a-7. The ¢asd¢hat (as
with all CAS permissions) aemand always succeeds if the application domain is migmm full trust (see the

following section).

Table 21a-7. Identity permissions
Type

GacIdentityPermission
StrongNameIdentityPermission

PublisherIdentityPermission

Enforces
The assembly is loaded into the GAC
The calling assembly has a particular strong name

The calling assembly is Authenticode-signed with a
particular certificate

© Joseph Albahari, 2007-2017

How Code Access Security Is Applied

When you run a .NET executable from the Windowdl siiecommand prompt, it runs with unrestricted
permissions. This is callddll trust.

If you execute an assembly via another hostingrenmient—such as a SQL Server CLR integration host,
ASP.NET, ClickOnce, or a custom host—the host deighat permissions to give your assembly. Ifstriets
permissions in any way, this is callpartial trust or sandboxing.

More accurately, a host does not restrict permmssto yourassembly. Rather, it creates an application domain
with restricted permissions, and then loads yosembly into that sandboxed domain. This meansatimat
other assemblies that load into that domain (sschsaemblies that you reference) run in that same®x

with the same permission set. There are two exaepthowever:

» Assemblies registered in the GAC (including the TNEamework)
« Assemblies that a host has nominated to fully trust

Assemblies in those two categories are considefgdtrusted and can escape the sandbox\byerting any
permission they want. They can also call methodkethas[SecurityCritical] in other fully trusted
assemblies, run unverifiabler(safe) code, and call methods that enforce link demaaidd,those link
demands will always succeed.

So when we say thatpartially trusted assembly calls fully trusted assembly, we mean that an assembly
running in a sandboxed application domain callsA&L£@ssembly—or an assembly nominated by the host fo
full trust.

Testing for Full Trust

You can test whether you have unrestricted peromssas follows:
|new PermissionSet (PermissionState.Unrestricted).Demand();

This throws an exception if your application domigisandboxed. However, it might be that your asdeiis,
in fact, fully trusted and so cansert its way out of the sandbox. You can test for byigquerying the
IsFullyTrusted property on th@ssembly in question.

Allowing Partially Trusted Callers

Allowing an assembly to accept partially trustetlera creates the possibility of an elevation a¥ifrge attack,
and is therefore disallowed by the CLR unless yamuest otherwise. To see why this is so, let’s sk at an
elevation of privilege attack.

Elevation of Privilege

Let's suppose the CLR didn't enforce the rule fisstcribed, and you wrote a library intended to $elun full-
trust scenarios. One of your properties was aevial]

public string ConnectionString
=> File.ReadAllText (_basePath + "cxString.txt");

Now, assume that the user who deploys your libdagides (rightly or wrongly) to load your assemioitp the
GAC. That user then runs a totally unrelated apgibm hosted in ClickOnce or ASP.NET, inside arietste
sandbox. The sandboxed application now loads ydlyr trusted assembly—and tries to call the
ConnectionString property. Fortunately, it throwsSacurityException becaus€ile.ReadAllText will
demand &ileIOPermission, which the caller won't have (remember thataand checks right up the
calling stack). But now consider the following madh

public unsafe void Poke (int offset, int data)
{

int* target = (int*) _origin + offset;
*target = data;

© Joseph Albahari, 2007-2017 6

Without an implicitbemand, the sandboxed assembly can call this method—saedt to inflict damage. This is
anelevation of privilege attack.

The problem in this case is that you never interfdegiour library to be called by partially trustadsemblies.
Fortunately, the CLR helps you by preventing tltisadion by default.

APTCA and [SecurityTransparent]
To help avoid elevation of privilege attacks, tHeRadoes not allow partially trusted assembliesath ftlly
trusted assemblies by defatilt.

To allow such calls, you must do one of two thitmshe fully trusted assembly:

e Applythe[AllowPartiallyTrustedCallers] attribute (called APTCA for short).
* Apply the[SecurityTransparent] attribute.

Applying these attributes means that you must thinéut the possibility of being thumtrusting party (rather
than theuntrusted party).

Prior to CLR 4.0, only the APTCA attribute was sapgpd. And all that it did was to enable partiatiysted
callers. From CLR 4.0, the APTCA also has the ¢fééémplicitly marking all the methods (and furmtis) in
your assembly asecurity transparent. We’'ll explain this in detail in the next sectidor now, we can
summarize it by saying that security transparertho@s can’t do any of the following (whether rurmin full
or partial trust):

* Run unverifiable {nsafe) code.

* Run native code via P/Invoke or COM.

« Assert permissions to elevate their security level.
» Satisfy a link demand.

e Call methods in the .NET Framework marked ascurityCritical]. Essentially, these comprise
methods that do one of the preceding four thindbauit appropriate safeguards or security checks.

The rationale is that an assembly that doesn’'t o ad these things cannot, in general, be
susceptible to an elevation of privilege attack.

The[SecurityTransparent] attribute applies a stronger version of the saufesr The difference is that with
APTCA, you can nominate selected methods in yosemably as nontransparent, whereas with
[SecurityTransparent], all methods must be transparent.

If your assembly can work witfiSecurityTransparent], your job is done as a library
author. You can ignore the nuances of the transpgirmodel and skip ahead to “Operating
System Security”!

Before we look at how to nominate selected metlasdsontransparent, let’s first look at when youpgls
these attributes.

The first (and more obvious) scenario is if younpia write a fully trusted assembly that will ruma partially
trusted domain. We walk through an example in “®amxthg Another Assembly.”

The second (and less obvious) scenario is writiligrary without knowledge of how it will be depleg. For
instance, suppose you write an object relationgdpaaand sell it over the Internet. Customers lilakee
options in how they call your library:

1. From a fully trusted environment
2. From a sandboxed domain
3. From a sandboxed domain, but with your assembly fulsted (e.g., by loading it into the GAC)

It's easy to overlook the third option—and thisvisere the transparency model helps.

! Before CLR 4.0, partially trusted assemblies cowltiaven call other partially trusted assembligéftarget was strongly
named (unless you applied the APTCA). This restnictiidn’t really aid security, and so was droppe€LR 4.0.

© Joseph Albahari, 2007-2017 7

The Transparency Model

To follow this, you’'ll need to have read the prexscsection and understand the scenarios for
applying APTCA and SecurityTransparent].

The security transparency model makes it easise¢are assemblies that might be fully trusted bhad talled
from partially trusted code.

By way of analogy, let's imagine that being a @lyitrusted assembly is like being convicted afime and
being sent to prison. In prison, you discover thate are a set of privileges (permissions) thatgam earn for
good behavior. These permissions entitle you tfoparactivities such as watching TV or playing betsiall.
There are some activities, however, that you caemeerform—such as getting the keys to the TV rgonthe
prison gates)—because such activities (methodsjdumdermine the whole security system. These nastho
are calledsecurity-critical.

If writing a fully trusted library, you would wand protect those security-critical methods. One ¥eagio so is
to Demand that callers be fully trusted. This was the apphogrior to CLR 4.0:

[PermissionSet (SecurityAction.Demand, Unrestricted = true)]
public Key GetTVRoomKey() { ... }

This creates two problems. Firegmands are slow because they must check right up theteak; this matters
becausesecurity-critical methods are sometimpesrformance-critical. A Demand can become particularly
wasteful if a security-critical method is calledaroop—perhaps from another fully trusted asseritbtire
Framework. The CLR 2.0 workaround with such metheds to instead enfordink demands, which check
only the immediate caller. But this also comes pttiee. To maintain security, methods that cakidemanded
methods must themselves perform demands or linkadder—or be audited to ensure that they don't allow
anything potentially harmful if called from a letsgsted party. Such an audit becomes burdensome vdie
graphs are complicated.

The second problem is that it's easy to forgetddgyrm a demand or link demand on security-critroathods
(again, complex call graphs exacerbate this). lildidve nice if the CLR could somehow help out anfbece
that security-critical functions are not unintentidly exposed to inmates.

The transparency model does exactly that.

The introduction of the transparency model is watezl to the removal of CABolicy (see
sidebar, “Security Policy in CLR 2.07).

How the Transparency Model Works

In the transparency model, security-critical methate marked with thgSecurityCritical] attribute:

[SecurityCritical]
public Key GetTVRoomKey() { ... }

All “dangerous” methods (containing code that thdR@onsiders could breach security and allow araiento
escape) must be marked withecurityCritical] or [SecuritySafeCritical]. This comprises:

» Unverifiable (iInsafe) methods

» Methods that call unmanaged code via P/Invoke okMG@erop

» Methods that\ssert permissions or call link-demanding methods

e Methods thatall [SecurityCritical] methods

» Methods thabverride virtual [SecurityCritical] methods

[SecurityCritical] means “this method could allow a partially trustedler to escape a sandbox”.

[SecuritySafeCritical] means “this method does security-critical thingss-ith appropriate safeguards
and so is safe for partially trusted callers”.

© Joseph Albahari, 2007-2017 8

Methods in partially trusted assemblies can nea#irsecurity critical methods in fully trusted asg#ies.
[SecurityCritical] methods can be called only by:

e Other[SecurityCritical] methods
* Methods marked asSecuritySafeCritical]

Security-safe critical methods act as gatekeepers for security-critiethods (see Figure 21a-1), and can be
called by any method in any assembly (fully or iadist trusted, subject to permission-based CAS dwiap To
illustrate, suppose that as an inmate you wantaichwtelevision. ThaatchTV method that you'll call will
need to calGetTVRoomKey, which means thatatchTv must besecurity-safe-critical:

[SecuritySafeCritical]
public void WatchTv()
{
new TVPermission().Demand();
using (Key key = GetTVRoomKey())
PrisonGuard.OpenDoor (key);

}

Notice that webemand aTVvPermission to ensure that the caller actually has TV-watchights, and carefully
dispose of the key we create. We are wrappisgarity-critical method, making isafe to be called by anyone.

4 N

. Transparent
v Code
4 Security\ (neither security safe critical
Safe nor security critical)
Critical
N y Transparent code cannot
call security critical code

Figure 21a-1. Transparency model; only the area in gray needs security auditing

Some methods partake in the activities considedmhderous” by the CLR, but are not
actually dangerous. You can mark these methodsthjirevith [SecuritySafeCritical]
instead of [SecurityCritical]. An example is theArray.Copy method: it has an
unmanaged implementation for efficiency, and yetncd be abused by partially trusted
callers.

© Joseph Albahari, 2007-2017 9

The UnsafeXXX Pattern

There’s a potential inefficiency in our TV-watchiegample in that if a prison guard wants to watchj
TV via theWatchTv method, he must (unnecessarily) satisfijvBermission demand. As a remedy,
the CLR team recommends a pattern whereby you @ldfio versions of the method. The first is
security-critical and is prefixed by the wddmhsafe:

[SecurityCritical]

public void UnsafeWatchTV()

{
using (Key key = GetTVRoomKey())

PrisonGuard.OpenDoor(key);
}

The second is security-safe-critical, and callsfits¢ after satisfying a full stack-walking demand

[SecuritySafeCritical]
public void WatchTV()

new TVPermission().Demand();
UnsafeWatchTV();

}

Transparent code

Under the transparency model, all methods fall orte of three categories:
e Security-critical

* Security-safe-critical

* Neither (in which case, they're call&é@nsparent)

Transparent methods are so called because you can ignorewhem it comes to auditing code for elevation of
privilege attacks. All you need to focus on arefthecuritySafeCritical] methods (the gatekeepers) which
typically comprise just a small fraction of an ambéy’s methods. If an assembly comprises entinglpgparent
methods, the entire assembly can be marked with3beurityTransparent] attribute:

|[assemb1y: SecurityTransparent]

We then say that thessembly itself is transparent. Transparent assemblies don't aediting for elevation of
privilege attacks and implicitly allow partiallyusted callers—you don’t need to apply APTCA.

Setting the transparency default for an assembly
To summarize what we said previously, there arewags to specify transparency at the assembly:level

« Apply the APTCA. All methods are then implicithyammsparent except those you mark otherwise.

» Apply the[SecurityTransparent] assembly attribute. All methods are then implcithnsparent,
without exception.

The third option is to do nothing. This still ogtsu into the transparency rules, but with every method
implicitly [SecurityCritical] (apart from any virtualSecuritySafeCritical] methods that you
override, which will remain safe-critical). The et is that you can call any method you like (asagmnjou’re
fully trusted), but transparent methods in otheeawblies won't be able to call you.

How to Write APTCA Libraries with Transparency

To follow the transparency model, first identifyethotentially “dangerous” methods in your assen(asy
described in the previous section). Unit tests pitk these up, because the CLR will refuse tosuch
methods—even in a fully trusted environment. (TMET Framework also ships with a tool called

to help with this.) Then mark each such methodhwit

© Joseph Albahari, 2007-2017 10

e [SecurityCriticall], if the method might be harmful if called fromes$ trusted assembly

* [SecuritySafeCriticall], if the method performs appropriate checks/safetsuand can be safely called
from a less trusted assembly

To illustrate, consider the following method, whicdils a security-critical method in the .NET Fravoek:

public static void LoadLibraries()

{
GC.AddMemoryPressure (1000000); // Security critical

}...

This method could be abused by being called regbafi®m less trusted callers. We could apply the
[SecurityCritical] attribute, but then the method would be callallly from other trusted parties via
critical or safe-critical methods. A better solutiis to fix the method so that it's secure and thaeply the
[SecuritySafeCritical] attribute:

static bool _loaded;

[SecuritySafeCritical]
public static void LoadLibraries()

{
if (_loaded) return;
_loaded = true;
GC.AddMemoryPressure (1000000);

¥
(This has the benefit of making it safer for trastallers, too.)

Securing unsafe methods

Next, suppose we have ansafe method that is potentially harmful if called byeas trusted assembly. We
simply decorate it with SecurityCriticall:

[SecurityCritical]
public unsafe void Poke (int offset, int data)
{
int* target = (int*) _origin + offset;
*target = data;

The CLR throws &/erificationException ("Operation could destabilize the runtime") if
you attempt to execute a transparent method thaaics unsafe code.

We then secure the upstream methods, marking thém 8ecurityCritical] or
[SecuritySafeCritical] as appropriate.

Next, consider the followingnsafe method, which filters a bitmap. This is intrindlgeharmless, so we can
mark itSecuritySafeCritical:

[SecuritySafeCritical]
unsafe void BlueFilter (int[,] bitmap)
{
int length = bitmap.Length;
fixed (int* b = bitmap)
{
int* p = b;
for (int i = 0; i < length; i++)
*p++ &= OXFF;
}

}

Conversely, you might write a function that doeg®@tform anything “dangerous” as far as the CLR is
concerned, but poses a security risk nonetheless.c#n decorate these, too, wittecurityCritical]:

© Joseph Albahari, 2007-2017 11

public string Password

{

[SecurityCritical] get { return _password; }

}

P/Invokes and [SuppressUnmanagedSecurity]

Finally, consider the following unmanaged methoticl returns a window handle fronPaint
(System.Drawing):

[D11Import ("user32.d11")]
public static extern IntPtr WindowFromPoint (Point point);

Remember that you can call unmanaged code only fseaurityCritical] and
[SecuritySafeCritical] methods.

You could say that akxtern methods are implicithf SecurityCritical], although there
is a subtle difference: applyifgecurityCritical] explicitly to anextern method has the
subtle effect of advancing the security check framtime to JIT time. To illustrate, consider
the following method:

static void Foo (bool exec)

if (exec) WindowFromPoint (...)

}

If called with false, this will be subject to a security check onlywifndowFromPoint is
marked explicitly with[SecurityCritical]

Because we’'ve made the method public, other faligted assemblies can callndowFromPoint directly from
[SecurityCritical] methods. For partially trusted callers, we expgbsefollowing secure version, which
eliminates the danger, Ip¢manding Ul permission and returning a managed clagsagsof anintPtr:

[UIPermission (SecurityAction.Demand, Unrestricted = true)]
[SecuritySafeCritical]
public static System.Windows.Forms.Control ControlFromPoint (Point point)
{
IntPtr winPtr = WindowFromPoint (point);
if (winPtr == IntPtr.Zero) return null;
return System.Windows.Forms.Form.FromChildHandle (winPtr);

}

Just one problem remains: the CLR performs an gitplemand for unmanaged permission whenever you
P/Invoke. And becausebamand checks right up the call stack, thindowFromPoint method will fail if the
caller’s caller is partially trusted. There are tways around this. The first is &ssert permission for
unmanaged code in the first line of thentrolFromPoint method:

|new SecurityPermission (SecurityPermissionFlag.UnmanagedCode).Assert();

Asserting our assembly-given unmanaged right héfemsure that the subsequent implizitnand in
WindowFromPoint will succeed. Of course, this assertion wouldifathe assembly itself wasn't fully trusted
(by virtue of being loaded into the GAC or beingminated as fully trusted by the host). We'll coessertions
in more detail in “Sandboxing Another Assembly.”

The second (and more performant) solution is tdyajiye [SuppressUnmanagedCodeSecurity] attribute to
the unmanaged method:

[D11Import ("user32.d1ll"), SuppressUnmanagedCodeSecurity]
public static extern IntPtr WindowFromPoint (Point point);

This tells the CLR to skip the expensive stack-wajkunmanagedemand (an optimization that could be
particularly valuable ifiindowFromPoint was called from other trusted classes or asseg)bliée can then
dump the unmanaged permission assertigivirtrolFromPoint.

© Joseph Albahari, 2007-2017 12

Because you're following the transparency modelplydpg this attribute to arextern
method doesn't create the same security risk aSLiR 2.0. This is because you're still
protected by the fact that P/Invokes are implic#gcurity-critical, and so can be called only
by other critical or safe-critical methods.

Security Policy in CLR 2.0

Prior to CLR 4.0, the CLR granted a default sgp@fmissions to .NET assemblies based on a comple
set of rules and mappings. This was called (odBcy and was defined in the computer's .NET
Framework configuration. Three standard grant segslted from policy evaluation, customizable at
the enterprise, machine, user, and application dolagels:

* “Full trust,” which was granted to assemblies tfzatt on the local hard drive
* “Locallntranet,” granted to assemblies that ranr@veetwork share
* ‘“Internet,” granted to assemblies that ran withitetnet Explorer

Only “Full trust” was fully trusted by default. Thimeant that if you ran a .NET executable over g
network share, it would run with a limited perm@siset and usually fail. This was supposed to offe
some protection, but in reality it offered none—dgxe a malicious party could simply replace the
.NET executable with an unmanaged executable arglibect to no permission restrictions. All that
this restriction achieved was to frustrate peoph® wanted to run full trust over a network share.

Therefore, the designers of CLR 4.0 decided toisihdhese security policies. All assemblies now run
in a permission set defined entirely by the hostedatables that you double-click or run from the
command prompt will always run in full trust—whetlmn a network share or on a local hard drive.

In other words, it's nowentirely up to the host as to how permissions should be restricted—3
machine’s CAS policy is irrelevant.

X

Transparency in Full-Trust Scenarios

In a fully trusted environment, you might want taite critical code and yet avoid the burden of siégu
attributes and method auditing. The easiest waghieve this is not to attach any assembly security
attributes—in which case all your methods are inifyi [SecurityCritical].

This works well as long &l partaking assemblies do the same thing—or iftluesparency-enabled
assemblies are at thettom of the call graph. In other words, you can still transparent methods in third-
party libraries (and in the .NET Framework).

To go in the reverse direction is troublesome; h@xethis trouble typically guides you to a be#etution.
Suppose you're writing assembilywhich is partly or wholly transparent, and younivio call assembly,
which is unattributed (and therefore fully critica¥ou have three options:

Go fully critical yourself. If your domain will alays be fully trusted, you don’t need to supportipby
trusted callers. Making that lack of suppexplicit makes sense.

Write [SecuritySafeCritical] wrappers around methodsxnThis then highlights the security
vulnerability points (although this can be burdensd.

Ask the author ok to consider transparency.dfdoes nothing critical, this will be as simple aplging
[SecurityTransparent] to X. If X does perform critical functions, the process dbfeing the
transparency model will force the authorxab at least identify (if not address¥ vulnerability points.

© Joseph Albahari, 2007-2017 13

Sandboxing Another Assembly

Suppose you write an application that allows corengrto install third-party plug-ins. Most likely ya want
to prevent plug-ins from leveraging your privilegesa trusted application, so as not to destahjbze
application—or the end user’s computer. The besttaachieve this is to run each plug-in in its own
sandboxed application domain.

For this example, we’ll assume a plug-in is packbaga .NET assembly called and that activating it
is simply a matter of starting the executable.Ghapter 24, we describe how to load a library arno
application domain and interact with it in a moopsisticated way.)

Here's the complete code, for thest program:

using System;

using System.IO;

using System.Net;

using System.Reflection;

using System.Security;

using System.Security.Policy;
using System.Security.Permissions;

class Program

{

static void Main()

{
string pluginFolder = Path.Combine (

AppDomain.CurrentDomain.BaseDirectory, "plugins");
string plugInPath = Path.Combine (pluginFolder, "plugin.exe");
PermissionSet ps = new PermissionSet (PermissionState.None);

ps.AddPermission
(new SecurityPermission (SecurityPermissionFlag.Execution));

ps.AddPermission
(new FileIOPermission (FileIOPermissionAccess.PathDiscovery |
FileIOPermissionAccess.Read, plugInPath));

ps.AddPermission (new UIPermission (PermissionState.Unrestricted));

AppDomainSetup setup = AppDomain.CurrentDomain.SetupInformation;
AppDomain sandbox = AppDomain.CreateDomain ("sbox", null, setup, ps);
sandbox.ExecuteAssembly (plugInPath);

AppDomain.Unload (sandbox);

You can optionally pass an array $trongName objects into theCreateDomain method,
indicating assemblies to fully trust. We'll give arample in the following section.

First, we create a limited permission set to désctie privileges we want to give to the sandbdms Tust
include at least execution rights and permissiaritfe plug-in to read its own assembly; otherwitseon’t
start. In this case, we also give unrestricted éthpssions. Then we construct a new applicationaiom
specifying our custom permission set, which willavearded to all assemblies loaded into that donviiathen
execute the plug-in assembly in the new domain,usrhoiad the domain when the plug-in finishes exagut

© Joseph Albahari, 2007-2017 14

In this example, we load the plug-in assembliesnfi subdirectory calleglugins. Putting
plug-ins in the same directory as the fully trushedt creates the potential for an elevation of
privilege attack, whereby the fully trusted domanplicitly loads and runs code in a plug-in
assembly in order to resolve a type. An exampléaf this could happen is if the plug-in
throws a custom exception whose type is defineiisimwn assembly. When the exception
bubbles up to the host, the host will implicithabbthe plug-in assembly if it can find it— in
an attempt to deserialize the exception. Puttiegpllng-ins in a separate folder prevents such
a load from succeeding.

Asserting Permissions

Permission assertions are useful when writing nuthibat can be called from a partially trusted m&de.
They allow fully trusted assemblies to temporagi§cape the sandbox in order to perform actionsaxbatd
otherwise be prohibited by downstreasmands.

Assertions in the world of CAS have nothing to dé@hwdiagnostic or contract-based
assertions. Callin@ebug.Assert, in fact, is more akin t@emanding a permission than
Asserting a permission. In particular, asserting a pesiors hasside-effects if the assertion

succeeds, where@gbug.Assert does not.

Recall that we previously wrote an application ttaat third-party plug-ins in a restricted permissget.
Suppose we want to extend this by providing a tiptd safe methods for plug-ins to call. For insteywe
might prohibit plug-ins from accessing a databasecty, and yet still allow them to perform certajueries
through methods in a library that we provide. Ormight want to expose a method for writing to a fibg—
without giving them any file-based permission.

The first step in doing this is to create a seaaasembly for this (e.gitilities) and add the
AllowPartiallyTrustedCallers attribute. Then we can expose a method as follows:

public static void WritelLog (string msg)

{
// Write to log

}...

The difficulty here is that writing to a file reqasFileIOPermission. Even though outilities assembly will
be fully trusted, the caller won't be, and so ailgrthasedemands will fail. The solution is to firshssert the

permission:

public class Utils
{

string _logsFolder = ...;

[SecuritySafeCritical]

public static void WritelLog (string msg)

{
FileIOPermission f = new FileIOPermission (PermissionState.None);
f.AddPathList (FileIOPermissionAccess.AllAccess, _logsFolder);
f.Assert();

// Write to log

© Joseph Albahari, 2007-2017

15

Because we’re asserting a permission, we must tharknethod agSecurityCritical] or
[SecuritySafeCritical] (unless we're targeting an earlier version of En@mework). In
this case, the method is safe for partially trustedllers, so we choose
SecuritySafeCritical. This, of course, means that we can’t mark therabyy as a whole
with [SecurityTransparent]; we must use APTCA instead.

Remember thatemand performs a spot-check and throws an exceptidmeifpiermission is not satisfied. It then
walks the stack, checking that all callers alsoehidnat permission (within the currextpDomain). An assertion
checks only that theurrent assembly has the necessary permissions, and if successdiles a mark on the
stack, indicating that from now on, the callerghtis should be ignored and only the current assgstights
should be considered with respect to those peromissiAnAssert ends when the method finishes or when you
call CodeAccessPermission.RevertAssert.

To complete our example, the remaining step is¢ate a sandboxed application domain that fullgtsrthe
utilities assembly. Then we can instantiatetaongName object that describes the assembly, and pasw®it in
AppDomain’s CreateDomain method:

static void Main()

{
string pluginFolder = Path.Combine (

AppDomain.CurrentDomain.BaseDirectory, "plugins");
string plugInPath = Path.Combine (pluginFolder, "plugin.exe");
PermissionSet ps = new PermissionSet (PermissionState.None);

// Add desired permissions to ps as we did before

/...

Assembly utilAssembly = typeof (Utils).Assembly;
StrongName utils = utilAssembly.Evidence.GetHostEvidence<StrongName>();

AppDomainSetup setup = AppDomain.CurrentDomain.SetupInformation;

AppDomain sandbox = AppDomain.CreateDomain ("sbox", null, setup, ps,
utils);

sandbox.ExecuteAssembly (plugInPath);

AppDomain.Unload (sandbox);

}

For this to work, thaitilities assembly must be strong-name signed.

Prior to Framework 4.0, you couldn’t obtairstirongName by callingGetHostEvidence as
we did. The solution was to instead do this:

AssemblyName name = utilAssembly.GetName();
StrongName utils = new StrongName (
new StrongNamePublicKeyBlob (name.GetPublicKey()),
name.Name,
name.Version);

The old-fashioned approach is still useful when gon’'t want to load the assembly into the

host's domain. This is because you can obtainAasemblyName without needing an
Assembly or Type object:

AssemblyName name = AssemblyName.GetAssemblyName
(@"d:\utils.d1l");

© Joseph Albahari, 2007-2017 16

