13a

Code Contracts

Introduced in Framework 4.08ode contracts allow methods to interact through a set of mutimigations, and
fail early if those obligations are violated.

The types in this chapter are defined primariljhi@System.Diagnostics and
System.Diagnostics.Contracts namespaces.

Overview

We mentioned in Chapter 13 6ff 7.0 in a Nutshell, the concept of aassertion, whereby you check that
certain conditions are met throughout your progriim.condition fails, it indicates a bug, whichtypically
handled by invoking a debugger (in debug buildghaswing an exception (in release builds).

Assertions follow the principle that if somethinges wrong, it's best to fail early and close tosbarce of the
error. This is usually better than trying to congrwith invalid data—which can result in incorreesults,
undesired side-effects, or an exception later ahérprogram (all of which are harder to diagnose).

Historically, there have been two ways to enforsgeations:
» By calling theAssert method orbebug or Trace
e By throwing exceptions (such asgumentNullException)

Code contracts replaces both of these approaches with a unifistem that allows you to make not only simple
assertions but also more powergaohtract-based assertions.

Code contracts derive from the principle of “DesignContract” from the Eiffel programming languagéere
functions interact with each other through a systémmutual obligations and benefits. Essentiallfyraction
specifiespreconditions that must be met by the client (caller), and tume guaranteegostconditions which the
client can depend on when the function returns.

The types for code contracts live in thestem.Diagnostics.Contracts namespace.

Although the types that support code contractdaik into the .NET Framework, the binary
rewriter and the static checking tools are avadladd a separate download at the Microsoft
DevLabs sitelgttp://msdn.microsoft.com/deviabs). You must install these tools before you can
use code contracts in Visual Studio.

© Joseph Albahari, 2007-2017 1

Why Use Code Contracts?

To illustrate, we'll write a method that adds amitto a list only if it's not already present—witto
preconditions and apostcondition:

public static bool AddIfNotPresent<T> (IList<T> list, T item)
{
Contract.Requires (list != null); // Precondition
Contract.Requires (!list.IsReadOnly); // Precondition
Contract.Ensures (list.Contains (item)); // Postcondition
if (list.Contains(item)) return false;
list.Add (item);
return true;

}

The preconditions are defined byntract.Requires and are verified when the method starts. The
postcondition is defined byontract.Ensures and is verified not where it appears in the cadgwhen the
method exits.

Preconditions and postconditions act like assestand, in this case, detect the following errors:

» Calling the method with a null or read-only list
* A bug in the method whereby we forgot to add thenito the list

Preconditions and postconditions must appear astdre of the method. This is conducive to
good design: if you fail to fulfill the contract subsequently writing the method, the error will
be detected.

Moreover, these conditions form a discoveraiokatract for that methodAddIfNotPresent advertises to
consumers:

* “You must call me with a non-null writable list.”
* “When I return, that list will contain the item y@pecified.”

These facts can be emitted into the assembly’s Xlgitumentation file (you can do this in Visual Stubly
going to the Code Contracts tab of the Project &itags window, enabling the building of a contraetference
assembly, and checking “Emit Contracts into XML di&"). Tools such as SandCastle can then incaifgor
contract details into documentation files.

Contracts also enable your program to be analyaeddrrectness by static contract validation tolélgou try
to callAddIfNotPresent with alist whose value might be null, for example, a stadilidation tool could
warn you before you even run the program.

Another benefit of contracts is ease of use. Inexample, it's easier to code the postconditiomartfthan at
both exit points. Contracts also suppabject invariants—which further reduce repetitive coding and make fo
more reliable enforcement.

Conditions can also be placed on interface mendradsabstract methods, something that is imposuilbhe
standard validation approaches. And conditionsidnal methods cannot be accidentally circumverhed
subclasses.

Yet another benefit of code contracts is that @mtviolation behavior can be customized easilyiarndore
ways than if you rely on callingebug . Assert or throwing exceptions. And it's possible to emstirat contract
violations are always recorded—even if contractation exceptions are swallowed by exception hasdle
higher in the call stack.

The disadvantage of using code contracts is tleatNET implementation relies orbanary rewriter—a tool
that mutates the assembly after compilation. Tloiws the build process, as well as complicatingises that
rely on calling the C# compiler (whether explicidy via theCSharpCodeProvider class).

The enforcing of code contracts may also incumdime performance hit, although this is easily gated by
scaling back contract checking in release builds.

© Joseph Albahari, 2007-2017 2

Another limitation of code contracts is that youn'taise them to enforce security-sensitive
checks, because they can be circumvented at rurtajeéhandling theContractFailed
event).

Contract Principles

Code contracts comprigeeconditions, postconditions, assertions, andobject invariants. These are all
discoverable assertions. They differ based on whey are verified:

» Preconditions are verified when a function starts.

» Postconditions are verified before a function exits.

e Assertions are verified wherever they appear in the code.

» Object invariants are verified after every public function in a das

Code contracts are defined entirely by callingtistanethods in th€ontract class. This makes contracts
language-independent.

Contracts can appear not only in methods, butherdunctions as well, such as constructors, ptaser
indexers, and operators.

Compilation

Almost all methods in theontract class are defined with tH&onditional ("CONTRACTS FULL")]

attribute. This means that unless you defineCtierRACTS_FULL symbol, (most) contract code is stripped out.
Visual Studio defines theONTRACTS_FULL symbol automatically if you enable contract chagkin the Code
Contracts tab of the Project Properties page. tfiisitab to appear, you must download and indtellGontracts
tools from the Microsoft DevLabs site.)

Removing theCONTRACTS_FULL symbol might seem like an easy way to disableatitract
checking. However, it doesn’'t apply Requires<TException> conditions (which we’ll
describe in detail soon).

The only way to disable contracts in code that Regsiires<TException> is to enable the
CONTRACTS_FULL symbol and then get the binary rewriter to strigt contract code by
choosing an enforcement level of “none.”

The binary rewriter

After compiling code that contains contracts, youstrcall the binary rewriter toaterewrite.exe (Visual Studio
does this automatically if contract checking isk#ed). The binary rewriter moves postconditiongd(abject
invariants) into the right place, calls any coratig and object invariants in overridden methodd,raplaces
calls toContract with calls to acontracts runtime class. Here's a (simplified) version of what our earlier
example would look like after rewriting:

static bool AddIfNotPresent<T> (IList<T> list, T item)
{
__ContractsRuntime.Requires (list != null);
__ContractsRuntime.Requires (!list.IsReadOnly);
bool result;
if (list.Contains (item))
result = false;
else
{
list.Add (item);
result = true;
¥
__ContractsRuntime.Ensures (list.Contains (item)); // Postcondition
return result;

}

© Joseph Albahari, 2007-2017 3

If you falil to call the binary rewriteiGontract won't get replaced with _ContractsRuntime and the former
will end up throwing exceptions.

The __ContractsRuntime type is the default contracts runtime class. maaded scenarios,
you can specify your own contracts runtime classthie/rw switch or Visual Studio’'s Code
Contracts tab in Project Properties.

Because ContractsRuntime is shipped with the binary rewriter (which is r@standard
part of the .NET Framework), the binary rewritetuadly injects the__ContractsRuntime
class into your compiled assembly. You can exantgeode by disassembling any assembly
that enables code contracts.

The binary rewriter also offers switches to stigag some or all contract checking: we describeetties
“Selectively Enforcing Contracts.” You typically &lole full contract checking in debug build configtions
and a subset of contract checking in release cor#igpns.

Asserting versus throwing on failure

The binary rewriter also lets you choose betwespldying a dialog and throwingCantractException upon
contract failure. The former is typically used @t@bug builds; the latter for release builds. Tobdméhe latter,
specify/throwonfailure when calling the binary rewriter, or uncheck tiessert on contract failure”
checkbox in Visual Studio’s Code Contracts tabriojétt Properties.

We'll revisit this topic in more detail in “Dealingith Contract Failure.”

Purity

All functions that you call from arguments passedantract method®¢quires, Assumes, Assert, etc.) must
be pure—that is, side-effect-free (they must not altervh&ies of fields). You must signal to the binagwriter
that any functions you call are pure by applying [thure] attribute:

[Pure]
public static bool IsValiduri (string uri) { ... }

This makes the following legal:
| Contract.Requires (Isvaliduri (uri));

The contract tools implicitly assume that all prdpeet accessors are pure, as are all C# operatorsy, etc.)
and members on selected Framework types, includingng, Contract, Type, System.IO0.Path, and
LINQ’s query operators. It also assumes that methindoked via delegates marked with flreire] attribute
are pure (th€omparison<T> andPredicate<T> attributes are marked with this attribute).

Preconditions

You can define code contract preconditions by meglliontract.Requires,
Contract.Requires<TException> or Contract.EndContractBlock.

Contract.Requires

CallingContract.Requires at the start of a function enforces a precondition

static string ToProperCase (string s)

{
Contract.Requires (!string.IsNullOrEmpty(s));

}...

This is like making an assertion, except that tleepndition forms a discoverable fact about youcfion that
can be extracted from the compiled code and condloyelocumentation or static checking tools (s they
can warn you should they see some code elsewhgmuimprogram that tries to calbProperCase with a null
or empty string).

A further benefit of preconditions is that subckssthat override virtual methods with preconditioaanot
prevent the base class method’s preconditions Freimg checked. And preconditions defined mterface

© Joseph Albahari, 2007-2017 4

members will be implicitly woven into the concréteplementations (see “Contracts on Interfaces abstract
Methods”).

Preconditions should access only members that ateaat as accessible as the function
itself—this ensures that callers can make sensgleeotontract. If you need to read or call less
accessible members, it's likely that you're validgtinternal state rather than enforcing the
calling contract, in which case you should make an assertion idstea

You can callcontract.Requires as many times as necessary at the start of theoohéd enforce different
conditions.

What Should You Put in Preconditions?

The guideline from the Code Contracts team is thetgditions should:

» Be possible for the client (caller) to easily vat&la

* Relyonly on data & functions at least as accessiblthe method itself.
* Always indicate dug if violated.

A consequence of the last point is that a cliemukh never specifically “catch” a contract failughe
ContractException type, in fact, is internal to help enforce thainpiple). Instead, the client should call the
target properly; if it fails, this indicates a btigat should be handled via your general exceptamk$top (which
may include terminating the application). In otleords, if you decide control-flow based on a prelitton
failure, it's not really a contract because you cantinue executing if it fails.

This leads to the following advice, when choosiegneen preconditions vs throwing exceptions:
» If failure always indicates a bug in the client, favor a preconditio

e If failure indicates ambnormal condition, whichmay mean a bug in the client, throw a (catchable) jgticr
instead.

To illustrate, suppose we're writing th@t32.Parse function. It's reasonable to assume that a nyuirstring
always indicates a bug in the caller, so we’'d esg€fdhis with a precondition:
public static int Parse (string s)

{

Contract.Requires (s != null);

Next, we need to check that the string containg digits and symbols such asand- (in the right place). It
would place an unreasonable burden on the calleslidate this, and so we’d enforce it not as a@nelition, but
a manual check that throws a (catchabt@)matException if violated.

To illustrate the member accessibility issue, cdeisithe following code, which often appears in gpe
implementing th&Disposable interface:

public void Foo()
{

if (_isDisposed) // _isDisposed is a private field
throw new ObjectDisposedException ("...");

This check should not be made into a preconditioless we make isDisposed accessible to the caller (by
refactoring it into a publicly readable propertyr instance).

Finally, consider th€ile.ReadAllText method. The following would bi@appropriate use of a precondition:

public static string ReadAllText (string path)

{
Contract.Requires (File.Exists (path));

The caller cannot reliably know that the file egibefore calling this method (it could be deletetiveen making
that check and calling the method). So, we'd emdtds in the old-fashioned way—by throwing a catie
FileNotFoundException instead.

© Joseph Albahari, 2007-2017 5

Contract.Requires<TException>

The introduction of code contracts challenges tleiing deeply entrenched pattern establishethén. NET
Framework from version 1.0:

static void SetProgress (string message, int percent) // Classic approach

{
if (message == null)
throw new ArgumentNullException (“"message");

if (percent < @ || percent > 100)
throw new ArgumentOutOfRangeException ("percent");

}...

static void SetProgress (string message, int percent) // Modern approach

{

Contract.Requires (message != null);
Contract.Requires (percent >= @ && percent <= 100);

}...

If you have a large assembly that enforces clasgiement checking, writing new methods with predtois
will create an inconsistent library: some methodktivow argument exceptions whereas others \ilbtv a
ContractException. One solution is to update all existing methodsge contracts, but this has two
problems:

e It's time-consuming.
e Callers may have come tigpend on an exception type such/asgumentNullException being thrown.
(This almost certainly indicates bad design, buy lma the reality nonetheless.)

The solution is to call the generic versioncofitract.Requires. This lets you specify an exception type to
throw upon failure:

Contract.Requires<ArgumentNullException> (message != null, "message");
Contract.Requires<ArgumentOutOfRangeException>
(percent >= @ & percent <= 100, "percent");

(The second argument gets passed to the constafdtoe exception class).

This results in the same behavior as with old-faséd argument checking, while delivering the begefi
contracts (conciseness, support for interfacesljégihdocumentation, static checking and runtime
customization).

The specified exception is thrown only if you sfgcithrowonfailure when rewriting the
assembly (ouncheck the Assert on Contract Failure checkbox in Visual Studio). Otherwise, a
dialog box appears.

It's also possible to specify a contract-checkiengl of ReleaseRequires in the binary rewriter (see “Selectively
Enforcing Contracts”). Calls to the genetientract.Requires<TException> then remain in place while all
other checks are stripped away: this results iassembly that behaves just as in the past.

Contract.EndContractBlock

TheContract.EndContractBlock method lets you get the benefit of code contratis traditional
argument-checking code—avoiding the need to refaide written prior to Framework 4.0. All you dodall
this method after performing manual argument chiecks

static void Foo (string name)

{

if (name == null) throw new ArgumentNullException ("name");
Contract.EndContractBlock();

© Joseph Albahari, 2007-2017 6

The binary rewriter then converts this code intmething equivalent to:

static void Foo (string name)

{
Contract.Requires<ArgumentNullException> (name != null, "name");
¥
The code that precedesdContractBlock must comprise simple statements of the form:
|if <condition> throw <expression>;
You can mix traditional argument checking with cadatract calls: simply put the latter after thenfier:

static void Foo (string name)

{
if (name == null) throw new ArgumentNullException ("name");
Contract.Requires (name.Length >= 2);
¥
Calling any of the contract-enforcing methods imitlly ends the contract block.

The point is to define a region at the beginninghef method where the contract rewriter knows évatryif
statement is part of a contract. Calling any ofdbetract-enforcing methods implicitly extends toatract
block, so you don't need to usedContractBlock if you use another method suchCastract.Ensures.

Preconditions and Overridden Methods

When overriding a virtual method, you cannot adetpnditions, because doing so wocdldnge the contract
(by making it more restrictive)—breaking the pripieis of polymorphism.

(Technically, the designers could have allowed w@den methods taveaken preconditions; they decided
against this because the scenarios weren’t suifigieompelling to justify adding this complexity).

The binary rewriter ensures that a base methodezgnditions are always enforced in
subclasses—whether or not the overridden methdsl it base method.

Postconditions

Contract.Ensures

Contract.Ensures enforces a postcondition: something which mudtie when the method exits. We saw an
example earlier:

static bool AddIfNotPresent<T> (IList<T> list, T item)
{
Contract.Requires (list != null); // Precondition
Contract.Ensures (list.Contains (item)); // Postcondition
if (list.Contains(item)) return false;
list.Add (item);
return true;

}

The binary rewriter moves postconditions to the pgints of the method. Postconditions are chedkgau
return early from a method (as in this example)—+mnitif you return early via an unhandled exception

Unlike preconditions, which detect misuse by ¢hker, postconditions detect an error in the functieelit
(rather like assertions). Therefore, postconditioay access private state (subject to the cavaiaidsshortly,
in “Postconditions and overridden methods”).

© Joseph Albahari, 2007-2017 7

Postconditions and Thread Safety

Multithreaded scenarios (Chapter 14) challengeuiedulness of postconditions. For instance, suppos,
we wrote a thread-safe wrapper fariast<T> with a method as follows:

public class ThreadSafelList<T>
{

List<T> _list = new List<T>();
object _locker = new object();

public bool AddIfNotPresent (T item)
{

Contract.Ensures (_list.Contains (item));
lock (_locker)
{

if (_list.Contains(item)) return false;
_list.Add (item);
return true;

}

}

public void Remove (T item)

lock (_locker)
_list.Remove (item);
}

}

The postcondition in theaddIfNotPresent method is checkedfter the lock is released—at which
point the item may no longer exist in the list ifosher thread calle@emove right then. There is
currently no workaround for this problem, otherrthia enforce such conditions as assertions (see ne
section) rather than postconditions.

D

Contract.EnsuresOnThrow<TException>
Occasionally, it's useful to ensure that a certaindition is true should a particular type of excmpbe
thrown. TheEnsuresOnThrow method does exactly this:

|Contract.EnsuresOnThrow<WebException> (this.ErrorMessage != null);

Contract.Result<T> and Contract.ValueAtReturn<T>

Because postconditions are not evaluated untihetion ends, it's reasonable to want to accessettuen value
of a method. The€ontract.Result<T> method does exactly that:

Random _random = new Random();
int GetOddRandomNumber()

{

Contract.Ensures (Contract.Result<int>() % 2 == 1);
return _random.Next (100) * 2 + 1;

b
TheContract.ValueAtReturn<T> method fulfills the same function—but foef andout parameters.

Contract.OldValue<T>

Contract.0ldvalue<T> returns the original value of a method param@ihis is useful with postconditions
because the latter are checked atetitkof a function. Therefore, any expressions in pmaditions that
incorporate parameters will read tiedified parameter values.

For example, the postcondition in the following huoat will always fail:

© Joseph Albahari, 2007-2017 8

static string Middle (string s)
{
Contract.Requires (s != null & s.Length >= 2);
Contract.Ensures (Contract.Result<string>().Length < s.Length);
s = s.Substring (1, s.Length - 2);
return s.Trim();

}

Here’s how we can correct it:

static string Middle (string s)
{
Contract.Requires (s != null & s.Length >= 2);
Contract.Ensures (Contract.Result<string>().Length <
Contract.0ldValue (s).Length);
s = s.Substring (1, s.Length - 2);
return s.Trim();

}

Postconditions and Overridden Methods

An overridden method cannot circumvent postcond#tidefined by its base, but it can add new ones. Th
binary rewriter ensures that a base method’s poditons are always checked—even if the overridaethod
doesn't call the base implementation.

For the reason just stated, postconditions on alirtmethods should not access private
members. Doing so will result in the binary rewritgeaving code into the subclass that will
try to access private members in the base classsipa runtime error.

Assertions and Object Invariants

In addition to preconditions and postconditions, tbde contracts API lets you make assertions afided
object invariants.

Assertions

Contract.Assert

You can make assertions anywhere in a functioralling Contract.Assert. You can optionally specify an
error message if the assertion fails:

int x = 3;

Contract.Assert (x 3); // Fail unless x is 3
Contract.Assert (x == 3, "x must be 3");

The binary rewriter doesn’t move assertions arodimgre are two reasons for favoribgntract.Assert over
Debug.Assert:

* You can leverage the more flexible failure-handlimgchanisms offered by code contracts
» Static checking tools can attempt to validadetract.Asserts

Contract.Assume

Contract.Assume behaves exactly likeontract.Assert at run-time, but has slightly different implicat®
for static checking tools. Essentially, static dtieg tools won’tchallenge an assumption, whereas they may
challenge an assertion. This is useful in thatethéll always be things a static checker is unablprove, and
this may lead to it “crying wolf” over a valid asen. Changing the assertion to an assumptionk#epstatic
checker quiet.

© Joseph Albahari, 2007-2017 9

Object Invariants

For a class, you can specify one or magect invariant methods. These methods run automatically afteryeve
public function in the class, and allow you to assert tha object is in an internally consistent state.

Support for multiple object invariant methods wasluded to make object invariants work
well with partial classes.

To define an object invariant method, write a pagtariess void method and annotate it with the
[ContractInvariantMethod] attribute. In that method, calbntract.Invariant to enforce each condition
that should hold true:

class Test

{
int _x, _y;

[ContractInvariantMethod]

void ObjectInvariant()

{
Contract.Invariant (_x >= 0);
Contract.Invariant (Ly >= _x);

}

public int X { get { return _x; } set { _x = value; } }
public void Testl() { x = -3;
void Test2() { x=-3;

}

The binary rewriter translates thgoroperty,Test1 method andest2 method to something equivalent to this:

public void X { get { return _x; } set { _x = value; ObjectInvariant(); } }
public void Testl() { _x = -3; ObjectInvariant(); }
void Test2() { x=-3;1} // No change because it’s private

Object invariants don’prevent an object from entering an invalid state: they ehedetect
when that condition has occurred.

Contract.Invariant is rather likeContract.Assert, except that it can appear only in a method marked
with the[ContractInvariantMethod] attribute. And conversely, a contract invariantimed can only
contain calls t@ontract. Invariant.

A subclass can introduce its own object invariaathnd, too, and this will be checked in additiothie base
class’s invariant method. The caveat, of coursthasthe check will take place only after a pulpfiethod is
called.

Contracts on Interfaces and Abstract Methods

A powerful feature of code contracts is that yon attach conditions to interface members and adistra
methods. The binary rewriter then automatically vesathese conditions into the members’ concrete
implementations.

A special mechanism lets specify a separate cdrtlass for interfaces and abstract methods, go/thacan
write method bodies to house the contract conditibtere’s how it works:

[ContractClass (typeof (ContractForITest))]
interface ITest

{

int Process (string s);

}

© Joseph Albahari, 2007-2017 10

[ContractClassFor (typeof (ITest))]
sealed class ContractForITest : ITest
{

int ITest.Process (string s) // Must use explicit implementation.

{
Contract.Requires (s != null);
return 0; // Dummy value to satisfy compiler.

}
}

Notice that we had to return a value when impleim@niTest.Process to satisfy the compiler. The code that
returns O will not run, however. Instead, the bynawriter extracts just the conditions from thatthod, and
weaves them into the real implementationsfst.Process. This means that the contract class is never
actually instantiated (and any constructors thatwate will not execute).

You can assign a temporary variable within the @mttblock to make it easier to reference other bexsof
the interface. For instance, if olifest interface also definedMessage property of typestring, we could
write the following inITest.Process:

int ITest.Process (string s)

{
ITest test = this;

Contract.Requires (s != test.Message);

}
This is easier than:
|Contract.Requires (s != ((ITest)this).Message);

(Simply usingthis.Message won't work becaus&essage must be explicitly implemented.) The process of
defining contract classes for abstract classesdstly the same, except that the contract classlghze marked
abstract instead okealed.

Dealing with Contract Failure

The binary rewriter lets you specify what happehemva contract condition fails, via thehrowonfailure
switch (or theAssert on Contract Failure checkbox in Visual Studio’€ontracts tab inProject Properties).

If you don’t specify/throwonfailure—or checkAssert on Contract Failure—a dialog appears upon contract
failure, allowing you to abort, debug or ignore #veor.

There are a couple of nuances to be aware of:

e If the CLR is hosted (i.e., in SQL Server or Exolpahn the host's escalation policy is
triggered instead of a dialog appearing.

e Otherwise, if the current process cant pop up alodi box to the user,
Environment.FailFast is called.

The dialog is useful in debug builds for a coudleeasons:

* It makes it easy to diagnose and debug contrdotéai on the spot—without having to re-run the paog
This works regardless of whether Visual Studioasfigured to break on first-chance exceptions. And
unlike with exceptions in general, contract failatmost certainly means a bug in your code.

e It lets you know about contract failure—even ifaler higher up in the stack “swallows” excepti@ss
follows:

try
{

// Call some method whose contract fails

}
catch { }

© Joseph Albahari, 2007-2017 11

The code above is considered an antipattern in mosharios because ritasks failures,
including conditions that the author never antitépa

If you specify the/throwonfailure switch and unchechssert on Contract Failure in Visual Studio—a
ContractException is thrown upon failure. This is desirable for:

* Release builds—where you would let the exceptidsbliup the stack and be treated like any other
unexpected exception (perhaps by having a top-kexegption handler log the error or invite the user
report it).

» Unit testing environments— where the process ofilog errors is automated.

ContractException cannot appear in aatch block because this type is not public. The
rationale is that there’s no reason that you'd watat specifically catch a
ContractException—you’d want to catch it only as part of a generaleption backstop.

The ContractFailed Event

When a contract fails the stationtract.ContractFailed event fires before any further action is taken. If
you handle this event, you can query the eventraegiis object for details of the error. You can alalb
SetHandled to prevent a@ontractException from being subsequently thrown (or a dialog apipegr

Handling this event is particularly useful whérhrowonfailure is specified, because it lets you lag
contract failures—even if code higher in the ctdkk swallows exceptions as we described just befoigreat
example is with automated unit testing:

Contract.ContractFailed += (sender, args) =>

{

string failureMessage = args.FailureKind + + args.Message;
// Log failureMessage with unit testing framework:
/...
args.SetUnwind();
I

This handler logs all contract failures, while allng the normatontractException (or contract failure
dialog) to run its course after the event handéey fiinished. Notice that we also cadttunwind: this
neutralizes the effect of any callstetHandled from other event subscribers. In other wordsn#uees that a
ContractException (or dialog) will always follow after all event hdiers have run.

If you throw an exception from within this handlany other event handlers will still execute. Theeption
that you threw then populates thenerException property of theContractException that's eventually
thrown.

Exceptions Within Contract Conditions

If an exception is thrown within a contract conglititself, then that exception propagates like atimgr—
regardless of whetheithrowonfailure is specified. The following method throws a
NullReferenceException if called with a null string:

string Test (string s)

{
Contract.Requires (s.Length > 0);

}...

This precondition is essentially faulty. It shouddtead be:

|Contract.Requires (!string.IsNullOrEmpty (s));

© Joseph Albahari, 2007-2017 12

Selectively Enforcing Contracts

The binary rewriter offers two switches that strigay some or all contract checkingiublicsurface and
/level. You can control these from Visual Studio via @ale Contracts tab ofProject Properties. The
/publicsurface switch tells the rewriter to check contracts amtypublic members. Thélevel switch has
the following options:

None (Level 0)
Strips outall contract verification

ReleaseRequires (Level 1)
Enables only calls to the generic versiortofitract.Requires<TException>

Preconditions (Level 2)
Enables all preconditions (Level 1 plus normal prelitions)

Pre and Post (Level 3)
Enables Level2 checking plus postconditions

Full (Level 4)
Enables Level 3 checking plus object invariants asgkrtions (i.e., everything)

You typically enable full contract checking in deblouild configurations.

Contracts in Release Builds

When it comes to making release builds, therevaoegeneral philosophies:

» Favor safety and enable full contract checking
» Favor performance and disable all contract checking

If you're building a library for public consumptipthough, the second approach creates a probleagite that
you compile and distribute library L in release madth contract checking disabled. A client theiildsi
project C indebug mode that references library L. Assembly C can ttedl members of L incorrectly without
contract violations! In this situation, you actyalant to enforce the parts of L's contract thaguee correct
usage of L—in other words, thpeeconditions in L’s public members.

The simplest way to resolve this is to enahleblicsurface checking in L with a level dPreconditions or
ReleaseRequires. This ensures that the essential preconditiongiicrced for the benefit of consumers, while
incurring the performance cost of only those prelitions.

In extreme cases, you might not want to pay evisnstinall performance price—in which case you cée the
more elaborate approachazl-site checking.

Call-Site Checking

Call-site checking moves precondition validatioonfrcalled methods intaalling methods (call sites). This
solves the problem just described—by enabling corss of library L to perform L’s precondition vadition
themselves in debug configurations.

To enable call-site checking, you must first bildeparateontracts reference assembly—a supplementary
assembly that contains just the preconditionsHerreferenced assembly. To do this, you can eitbethe
ccrefgen command-line tool, or proceed in Visual Studid@d®ws:

1. Inthe release configuration of theferenced library (L), go to theCode Contracts tab ofProject
Properties and disable runtime contract checking while tigkiBuild a Contract Reference Assembly”.
This then generates a supplementary contractsereferassembly (with the suffisontracts.dll).

2. Intherelease configuration of theeferencing assemblies, disable all contract checking.
3. Inthedebug configuration of theeferencing assemblies, tick “Call-site Requires Checking”.

© Joseph Albahari, 2007-2017 13

The third step is equivalent to calliogrewrite with the/callsiterequires switch. It reads the preconditions
from the contracts reference assembly and weaees ifito the calling sites in the referencing asdgmb

Static Contract Checking

Code contracts malgtatic contract checking possible, whereby a tool analyzes contract caymiitio find
potential bugs in your program before it's run. Egample, statically checking the following codagmtes a
warning:

static void Main()

{
string message = null;
WriteLine (message); // Static checking tool will generate warning

}

static void WritelLine (string s)

{
Contract.Requires (s != null);
Console.WriteLine (s);

}

You can run Microsoft’s static contracts tool frolne command line vieccheck, or by enabling static contract
checking in Visual Studio’s project properties dil

For static checking to work, you may need to adetpnditions and postconditions to your methodsgiVe a
simple example, the following will generate a waai

static void WritelLine (string s, bool b)

if (b)
WriteLine (s); // Warning: requires unproven

}

static void WritelLine (string s)

{
Contract.Requires (s != null);
Console.WriteLine (s);

}

Because we're calling a method that requires timarpater to be non-null, we must prove that the raent is
non-null. To do this, we can add a preconditiothefirst method as follows:

static void WriteLine (string s, bool b)

{
Contract.Requires (s != null);
if (b)
WriteLine (s); // OK
}

The ContractVerification Attribute

Static checking is easiest if instigated from thgibning of a project’s lifecycle—otherwise youlieely to get
overwhelmed with warnings.

If you do want to apply static contract checkin@toexisting codebase, it can help by initially lgjyg it just
to selective parts of a program—via thentractVerification attribute (in
System.Diagnostics.Contracts). This attribute can be applied at the assemighe aind member level. If
you apply it at multiple levels, the more granuwians. Therefore, to enable static contract vertfarajust for a
particular class, start by disabling verificatidrttee assembly-level as follows:

© Joseph Albahari, 2007-2017 14

|[assemb1y: ContractVerification (false)]
and then enable it just for the desired class:

[ContractVerification (true)]
class Foo { ... }

Baselines

Another tactic in applying static contract veritica to an existing codebase is to run the stdtecker with the
Baseline option checked in Visual Studio. All the warnirthat are produced are then written to a specified
XML file. Next time you run static verification, lahe warnings in that that file are ignored—so pee only
messages generated as a resutieafcode that you've written.

The SuppressMessage Attribute

You can also tell the static checker to ignoreaiertypes of warnings via thippressMessage attribute (in
System.Diagnostics.CodeAnalysis):

|[SuppressMessage ("Microsoft.Contracts", warningFamily)]
wherewarningFamily is one of the following values:

Requires Ensures Invariant NonNull DivByZero MinValueNegation
ArrayCreation ArraylLowerBound ArrayUpperBound

You can apply this attribute at an assembly or tegpel.

© Joseph Albahari, 2007-2017 15

