15a

Isolated Storage

Each .NET program has access to a local storageuaigue to that program, callesblated storage. Isolated
storage is useful when your program can't accesstdndard file system, and so cannot write to
ApplicationData, LocalApplicationData, CommonApplicationData, MyDocuments, and so on (see
“Special Folders”). This is the case with Silvehligipplications and ClickOnce applications deployth
restricted “Internet” permissions.

Isolated storage has the following disadvantages:

The API is awkward to use.

You can read/write only via alnsolatedStorageStream—you cannot obtain a file or directory path and
then use ordinary file 1/0.

The machines stores (equivalenttmmonApplicationData) won't let users with restricted OS
permissions delete or overwrite files if they wereated by another user (although they can moléyn).
This is effectively a bug.

In terms of security, isolated storage is a feresighed more to keep you in than to keep otheiicgijuns out.
Data in isolated storage is strongly protectedragjantrusion from other .NET applications runningder the
most restricted permission set (i.e., the “Intér@ene). In other cases, there’s no hard securgygnting
another application from accessing your isolatedagie if it really wants to. The benefit of isolht&torage is
that applications must go out of their way to iféez with each other—it cannot happen through easgless or
by accident.

Applications running in a sandbox typically haveitiguota of isolated storage limited via permissiol he
default is 1MB for Internet and Silverlight applias.

A hosted Ul-based application (e.g., Silverlighthcask the user for permission to increase
the isolated storage quota by calling thencreaseQuotaTo method on an
IsolatedStorageFile object. This must be called from a user-initiamwaent, such as a
button click. If the user agrees, the method rettinne.

You can query the current allowance via Qoeta property.

Isolation Types

Isolated storage can separate by both program serd This results in three basic types of compartse

Local user compartments

One per user, per program, per computer

Roaming user compartments

One per user, per program

© Joseph Albahari, 2007-2017 1

Machine compartments
One per program, per computer (shared by all ufeagprogram)

The data in a roaming user compartment followsue across a network—with appropriate operatistesy
and domain support. If this support is unavailablbehaves like a local user compartment.

So far, we've talked about how isolated storagessps by “program.” Isolated storage considenogram to
be one of two things, depending on which mode ywmose:

e Anassembly
* An assembly running within the context of a patécwapplication

The latter is calledomain isolation and is more commonly used thassembly isolation. Domain isolation
segregates according to two things: the currentidceting assembly and the executable or web apiolicthat
originally started it. Assembly isolation segregabaly according to the currently executing assgmisio
different applications calling the same assembly/skiare the same store.

Assemblies and applications are identified by te&iong name. If no strong name is present,
the assembly’s full file path or URI is used inste@his means that if you move or rename a
weakly named assembly, its isolated storage ig.rese

In total, then, there are six kinds of isolatedage compartments. Table 15a-4 compares the isolptovided
by each.

Table 15a-1. |solated storage containers

Type Computer? Application? Assembly? User? M ethod to obtain store
Domain v v v v GetUserStoreForDomain
User

(default)

Domain v v v

Roaming

Domain v v v GetMachineStoreForDomain
Machine

Assembly v/ 4 v GetUserStoreForAssembly
User

Assembly v v

Roaming

Assembly v/ v GetMachineStoreForAssembly
Machine

There is no such thing as domain-only isolatioryoldl want to share an isolated store across ahalslies

within an application, there’s a simple workarouhdyever. Just expose a public method in one of the
assemblies that instantiates and returnssafiatedStorageFileStream object. Any assembly can access any
isolated store if given alsolatedStorageFile object—isolation restrictions are imposed uponstarttion,

not subsequent use.

Similarly, there’s no such thing as machine-onbtason. If you want to share an isolated stor@ssm variety
of applications, the workaround is to write a comnagsembly that all applications reference, and &xpose a
method on the common assembly that creates anthsedn assembly-isolatédolatedStorageFileStream.
The common assembly must be strongly named fotdhigork.

Reading and Writing Isolated Storage

Isolated storage uses streams that work much titk@ary file streams. To obtain an isolated storsigeam,
you first specify the kind of isolation you want bglling one of the static methods on
IsolatedStorageFile—as shown previously in Table 15a-4. You then g ¢onstruct an
IsolatedStorageFileStream, along with a filename areli 1eMode:

© Joseph Albahari, 2007-2017 2

// IsolatedStorage classes live in System.IO.IsolatedStorage

using (IsolatedStorageFile f =
IsolatedStorageFile.GetMachineStoreForDomain())
using (var s = new IsolatedStorageFileStream ("hi.txt",FileMode.Create,f))
using (var writer = new StreamWriter (s))
writer.WriteLine ("Hello, World");

// Read it back:

using (IsolatedStorageFile f =
IsolatedStorageFile.GetMachineStoreForDomain())
using (var s = new IsolatedStorageFileStream ("hi.txt", FileMode.Open, f))
using (var reader = new StreamReader (s))
Console.WriteLine (reader.ReadToEnd()); // Hello, world

IsolatedStorageFile is poorly named in that it doesn't represent &, fibut rather a
container for files (basically, a directory).

A better (though more verbose) way to obtairtanmlatedStorageFile is to call
IsolatedStorageFile.GetStore, passing in the right combination bfolatedStorageScope flags (as
shown in Figure 15a-6):

var flags = IsolatedStorageScope.Machine
| IsolatedStorageScope.Application
| IsolatedStorageScope.Assembly;

using (IsolatedStorageFile f = IsolatedStorageFile.GetStore (flags,
typeof (StrongName), typeof (StrongName)))

{

The advantage of doing it this way is that we @&lGetStore what kind ofevidence to consider when
identifying our program, rather than letting it cse automatically. Most commonly, you'll want teuke
strong names of your program’s assemblies (as we dhane in this example) because a strong nanmadqsiel
and easy to keep consistent across versions.

The danger of letting the CLR choose evidence aatimally is that also considers
Authenticode signatures (Chapter 18). This is uguatdesirable because it means that an
Authenticode-related change will trigger a chanfédentity. In particular, if you start out
without Authenticode and then later decide to agddhie CLR will see your application as
different from the perspective of isolated storag@] this can mean users losing data between
versions.

IsolatedStorageScope is a flags enum whose members you must combiegantly the right way to get a
valid store. Figure 15a-6 lists all the valid condtions. Note that they let you access the roastiogs (these
are like local stores but with the capability todm” via Windows Roaming Profiles).

Assembly Assembly & Domain

Local User Assembly | User Assembly | Domain | User

Roaming User | Assembly | User | Roaming | Assembly | Domain | User | Roaming

Machine Assembly | Machine Assembly | Domain | Machine

Figure 15a-1. Valid | solatedStorageScope combinations

© Joseph Albahari, 2007-2017 3

Here’s how to write to a store isolated by asserably roaming user:

var flags = IsolatedStorageScope.Assembly
| IsolatedStorageScope.User
| IsolatedStorageScope.Roaming;

using (IsolatedStorageFile f = IsolatedStorageFile.GetStore (flags, null, null))
using (var s = new IsolatedStorageFileStream ("a.txt", FileMode.Create, f))
using (var writer = new StreamWriter (s))

writer.WriteLine ("Hello, World");

Store Location

Here’s where .NET writes isolated storage files:

Scope L ocation

Local user [LocalApplicationData]\lsolatedSorage

Roaming user [ApplicationData]\lsolatedStorage

Machine [CommonApplicationData]\lsolatedStorage

You can obtain the locations of each of the foldersquare brackets by calling the
Environment.GetFolderPath method. Here are the defaults for Windows Vista alpove:
Scope L ocation

Local user \Users\<user>\AppData\L ocal\l solatedStorage

Roaming user \Users\<user>\AppData\Roaming\l solatedStorage

Machine \ProgramDatal\l solatedStorage

For Windows XP:

Scope L ocation

Local user \Documents and Settings\<user>\Local Settings\Application Data\lsolatedStorage
Roaming user \Documents and Settings\< user>\Application Data\l solatedSorage

Machine \Documents and Settings\All Users\Application Data\l solatedStorage

These are merely the base folders; the data fikxmselves are buried deep in a labyrinth of subftiries
whose names derive from hashed assembly namesisTioth a reason to use—and not to use—isolated
storage. On the one hand, it makes isolation plesglpermission-restricted application wantingnterfere
with another can be stumped by being denied atdingtisting—despite having the same filesystenmtsgas
its peers. On the other hand, it makes administrathpractical from outside the application. Somes it's
handy—or essential—to edit an XML configuratiorefih Notepad so that an application can start opgmty.
Isolated storage makes this impractical.

Enumerating Isolated Storage

An IsolatedStorageFile object also provides methods for listing fileghe store:

using (IsolatedStorageFile f = IsolatedStorageFile.GetUserStoreForDomain())
{

using (var s = new IsolatedStorageFileStream ("fl.x",FileMode.Create,f))
s.WriteByte (123);

using (var s = new IsolatedStorageFileStream ("f2.x",FileMode.Create,f))
s.WriteByte (123);

foreach (string s in f.GetFileNames ("*.*"))
Console.Write (s + " "); // fl.x f2.x

© Joseph Albahari, 2007-2017

You can also create and remove subdirectorieseiisaw/files:

using (IsolatedStorageFile f = IsolatedStorageFile.GetUserStoreForDomain())

{
f.CreateDirectory ("subfolder");

foreach (string s in f.GetDirectoryNames ("*.*"))
Console.WriteLine (s); // subfolder

using (var s = new IsolatedStorageFileStream (@"subfolder\subl.txt",

FileMode.Create, f))
s.WriteByte (100);

f.DeleteFile (@"subfolder\subl.txt");
f.DeleteDirectory ("subfolder");

}

With sufficient permissions, you can also enumeoaer all isolated stores created by the curreet, & well
as all machine stores. This function can violategpam privacy, but not user privacy. Here’'s an epiam

System.Collections.IEnumerator rator =
IsolatedStorageFile.GetEnumerator (IsolatedStorageScope.User);

while (rator.MoveNext())

{
var isf = (IsolatedStorageFile) rator.Current;
Console.WriteLine (isf.AssemblyIdentity); // Strong name or URI
Console.WriteLine (isf.CurrentSize);
Console.WriteLine (isf.Scope); // User + .
}

TheGetEnumerator method is unusual in accepting an argument (tlakas its containing clasereach-
unfriendly).GetEnumerator accepts one of three values:

IsolatedStorageScope.User
Enumerates all local stores belonging to the ctiusar

IsolatedStorageScope.User | IsolatedStorageScope.Roaming
Enumerates all roaming stores belonging to thecotiuser

IsolatedStorageScope.Machine
Enumerates all machine stores on the computer

Once you have thesolatedStorageFile object, you can list its content by calliagtFiles and
GetDirectories.

© Joseph Albahari, 2007-2017 5

